
Elliptic curves: theory and applications (B. Conrad, 9/12/2010)

I. Exercises on conics in the plane (These are related to the first hour.)

I.1. Let C be the unit circle {u2 + v2 = 1} in the plane. For the lines Lt = {v = t(u + 1)} with varying
slope t through the “base point” P = (−1, 0), the intersection Lt ∩ C consists of P and

Pt =
(
t2 − 1
t2 + 1

,
2t

t2 + 1

)
;

draw a picture for yourself. This parametric formula for the circle (with parameter t) is superior to the
parameterization θ 7→ (cos θ, sin θ) for studying rationality properties of points on the circle, as we will see.

(i) If w2 + aw + b = 0 is a quadratic polynomial with a known root r, give an easy formula for the other
root using only addition and subtraction with r, a, b, no “quadratic formula”.

(ii) Using (i), do the algebra to justify the above description of Lt ∩C. What happens if you formally set
t =∞ in the formula for Pt, and why is this geometrically reasonable (so we let P∞ = P )?

(iii) For t ∈ R ∪ {∞}, explain without extensive computations why t ∈ Q ∪ {∞} if and only if Pt has
coordinates in Q. By then setting t = n/m for relatively prime positive integers m and n, express the
condition that Pt lies in the first quadrant in terms of inequalities on n and m, and then deduce by clearing
denominators that every primitive Pythagorean triple has the form

(n2 −m2, 2nm, n2 +m2)

with n and m not both odd. What happens if we allow n or m (or both) to be ≤ 0?
(iv) Work out parametric formulas analogous to Pt when using the base point (1, 0), as well as for

3u2 + 2v2 = 5 with the base point (1, 1) (formally allowing ∞ as a parameter, corresponding to (1,−1)).
Deduce that this ellipse has infinitely many rational points, and relate the slope of the tangent line at the
base point to the case t =∞ in (ii).

I.2. Using the base point (3/5, 4/5) on the unit circle, adapt the method in I.1(ii) to obtain the following
crazy-looking parameterization of rational nonzero solutions to x2 + y2 = z2:

(3m2 − 8mn− 3n2,−4m2 − 6mn+ 4n2, 5(m2 + n2))

with m,n ∈ Q. For which m,n ∈ Z is this triple “primitive”? Whereas the choice of base point is not too
significant for the study of Q-points, it makes a huge difference in the study of integrality questions.

I.3. For integers a, b,m with m > 0, we say a ≡ b mod m (read “a is congruent to b modulo m”) when
a− b is divisible by m (equivalently, a and b leave the same remainder upon division by m).

(i) If a ≡ b mod m and a′ ≡ b′ mod m then a + b ≡ a′ + b′ mod m and ab ≡ a′b′ mod m. Test this with
some numerical examples, and show that if p is prime and ab ≡ ac mod p with a 6≡ 0 mod p then b ≡ c mod p
(cancellation!) but find a counterexample modulo 15. We say a is a square modulo m if x2 ≡ a mod m has
a solution. Find the squares modulo 3, 5, 7, 8, 9.

(ii) Prove that u2 + v2 = 3 has no solutions in Q. (Hint: clear denominators and work modulo 3 with a
hypothetical “primitive” Z solution to x2 + y2 = 3z2.)

(∗) (iii) For each of the following, discuss (non-zero) solutions in Q and Z, or show that none exist:
x2 − 2y2 = z2, 2z2 + 2y2 = 3z2, 7x2 − 23y2 = 15z2, 7x2 + 23y2 = 15z2. Can you generalize?

I.4. Use the method of I.1(iv) to parameterize Q-points on the hyperbola u2 − 7v2 = 1. If you know
about Pell’s equation, does your Q-parameterization help at all in the study of Z-points?

I.5. (i) In I.1, explain why t = tan(θ/2) if x = cos θ and y = sin θ.
(∗∗) (ii) Use (i) and I.1 to discover a trigonometric substitution that yields the identity∫

sec(θ)dθ = log
(

1 + tan(θ/2)
1− tan(θ/2)

)
.

Similarly compute
∫

dθ/(1+sin(θ)) and
∫

dθ/(3+5 sin(θ)). (This is the method of “Weierstrass substitution”.
It converts “any” trigonometric integral into an integral of a rational function, which is computable in theory
via partial fractions and computable in practice in very special cases.)
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II. Exercises on elliptic curves (These rest on material from the second hour.)

II.1. The elliptic curve y2 = x3 − 25x has (0, 0), (±5, 0), and (−4, 6) as some of its Q-points.
(i) By considering where x3 − 25x ≥ 0, draw a rough sketch of the solution locus E in R2.
(ii) If you draw a typical line through P = (−4, 6), in how many other points does it meet E? What goes

wrong if we try the rational parameterization method for degree-2 curves to higher-degree curves?
(iii) Determine where E meets the line joining P to each of the above other Q-points; relate this to solving

a cubic in x with Q-coefficients and two known Q solutions (no cubic formula needed!).
(iv) The tangent line to E at P is y = (23/12)x+ 41/3; prove this if you know calculus. Compute where

this line meets the curve, and observe that you are led to a cubic equation in x with a double root at x = −4.
By thinking of a tangent line as a “limit” of secant lines through a point, why should we get a double root?

II.2. The rational right triangle (3/2, 20/3, 41/6) with area 6 gives rise to the rational point (−4, 6) on
y2 = x3 − 36x. But in terms of algebra, we can change signs on the numbers 3/2, 20/3, and 41/6 and get
more such rational points!

(i) Using sign changes, discover the following additional rational points: (−4,−6) and (25/4,±75/8).
Graph the picture of these points on the cubic curve.

(ii) Join such pairs not on the same vertical line and find yet more rational points on the curve. Going
backwards, produce more impressive rational right triangles with area 6!

II.3. The curve y2 = x3 − 49x has the rational point (25, 120). Check it.
(i) Using the formulas, discover the “triangle” (−24/5,−35/12, 337/60). What point on the elliptic curve

corresponds to the genuine triangle (24/5, 35/12, 337/60)?
(ii) Now you have two points on the curve not on the same vertical line. Compute where their secant line

meets the curve, and discover another triangle with area 7. Can you continue the process?

II.4. Fermat proved 1 is not a congruent number by relating it to his “last theorem” for exponent 4:
(i) Suppose there is a rational right triangle with area 1. Scaling by the common denominator of the side

lengths, get positive integers a, b, c, d with a2 + b2 = c2 and ab/2 = d2. Prove that g := gcd(a, b) divides c
and d also, so divide throughout by g to get to the case g = 1.

(ii) Using that ab = 2d2 and g = 1, prove a and b have opposite parity. Deduce c is odd and gcd(b, c) = 1.
Swapping labels if necessary, arrange a is even and b is odd. Prove a = 2k2 and b = `2 with positive integers
k and ` with ` odd.

(iii) Since c2 = a2 + b2 = 4k4 + b2, deduce c+b
2 ·

c−b
2 = k4. But prove gcd((c + b)/2, (c − b)/2) = 1, and

conclude (c+ b)/2 = r4 and (c− b)/2 = s4 with integers r and s.
(iv) Prove b = r4 − s4, so `2 = r4 − s4. Get a point on v2 = u4 + 1 with u, v ∈ Q− {0}, which we saw is

ruled out by the “elliptic curve” interpretation of Fermat’s method (though his infinite descent method can
also be directly adapted to X4 − Y 4 = Z2; try for yourself!).

(∗∗) II.5. Consider the congruence y2 ≡ x3 − n2x mod p for a prime p - 2n.
(i) Prove that the squaring map on the nonzero classes modulo p is a 2-to-1 map, so there are exactly

(p− 1)/2 nonzero squares modulo p.
(ii) If p ≡ 3 mod 4, it is a general fact that −1 is not a square modulo p. Using this, prove that the

number of solutions to the cubic congruence is 3 + 2((p− 3)/2) = p for such p.
(iii) If we include an additional “point at infinity”, then the solution locus to the congruence (together

with this extra point) has a natural group structure by using this extra point as the identity and the
secant/tangent method (defined purely algebraically!) as the composition law. In this sense, the solution
locus modulo p is a finite group of order p+ 1 when p ≡ 3 mod 4.

If you are familiar with elementary finite group theory, deduce that if the set of Q-points is finite then
together with an additional “point at infinity” its order must divide p+ 1 for all large primes p ≡ 3 mod 4.
(“Large” to avoid denominators in this hypothetical finite group of Q-points.) Varying such p and using
Dirichlet’s deep theorem that every arithmetic progression of integers {a + nb}n≥0 (with b 6= 0) contains
infinitely many primes, prove that the group of Q-points (with ∞) has order at most 4. So any Q-point on
y2 = x3−n2x apart from the three with y = 0 must have infinite order in the group law of the elliptic curve!


