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Abstract

In this article we will examine various properties of ite@functions. Iff ()
is a function, then the iterates @fare: f(z), f(f(x)), f(f(f(z))),. ...

1 Introduction

| first became fascinated by iterated functions when | hademstic calculator for the
first time and repeatedly pressed the “cosine” button.

The calculator was in “radians” mode, so the angles werepre¢ed in radians rather
than degreés but | found that no matter what number | started with, afteough
button presses of the “cosine” button, the numbers seenmaggpt@ach739085133215.

What | was doing, of course, was iterating the cosine fumctih my starting num-
ber wasl1, then pressing the cosine button repeatedly was genertiinépllowing
sequence of numbers:

cos(1) 540302305868

cos(cos(1)) = .857553215846
cos(cos(cos(1))) = .654289790498
cos(cos(cos(cos(1)))) = .793480358742
cos(cos(cos(cos(cos(1))))) = 701368773623

As | continued pressing the cosine button, the numericaltekept oscillating to val-
ues above and below, but each time closer to, the final liitadue of approximately
.739085133215.

Of course there’s nothing special about the cosine functog function can be iter-
ated, but not all iterated functions have the same nice cgawee properties that the
cosine function has. In this paper, we’ll look at varioustigrof iteration.

10ne radian is equal to aboBT.2957795131 degrees. If you've never seen it, this seems like a strange
way to measure angles but it makes very good sense. In arahd @ circle with radiug), the circumference
is 27r, and if we measure in terms of that length instead of in terfr366 degrees, we find th&r radians
is 360 degrees, from which the conversion above can be derived.



2 A SimplePractical Example

Suppose you put some money (sagollars) in a bank at a fixed interest rate. For exam-
ple, suppose the bank offers simple intered0&t per year. At the end of one year, you
will have your original: dollars plug.10)z dollars of interest, oz +(.10)z = (1.10)x
dollars. In other words, if you begin with any amount of mora@e year later you will
have that amount multiplied hby.10.

Suppose you'd like to know how much money you have aiter 10 years. If you
consider the increase in value over one year to be a funcaomedy, then we will
have:

f(z) = (1.10)x.

The functionf will take any input value and tell you the resulting outpulieaif that
input value is left in the bank for one year. Thus if you staitbw: dollars, then after
one year, you will havef(x) dollars. At the beginning of the second year you have
f(z) dollars, so at the end of the second year, you'll hyé(x)) dollars. Similar
reasoning yields (f(f(z))) dollars after the third year;(f(f(f(x)))) dollars at the
end of the fourth year, and so on.

It would be nice to have an easier notation for function tierg especially if we iterate
100 or 1000 times. Some people use an exponent, like this:

FUEES @) = (),

but there’s a chance that this could be confused with regadponentiation (and it
could, especially with functions like the cosine functiorentioned above). So we will
use the following notation with parentheses around thatiten number:

P F @) = F9 @)
As with standard exponentiation, we'll find it is sometimagful to define:

o (x) = .

Returning to our example wheféx) represents the amount of money in your account
a year after investing dollars, then the amount you'll have afteb years would be

FUO ().
It is fairly easy to derive exactly the form gf™ () for this example. Since each year,
the amount of money is multiplied by 10, we can see that:

™ (z) = (1.10)",

and this even works for the case where- 0.

Although this example is so simple that it is easy to give a@tbform forf (™ (z), we
will use that example to show how iteration can be analyzaglgcally. First, imagine
the graph off (z) = (1.10)z versusz.
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In the graph above, two lines are plotted that pass througlotigin. The upper line
corresponds to the function= f(x) = (1.10)z and the lower one, to the function
y = a2 which forms a45° angle with ther andy axes. Now suppose we begin with an
investment 0$100. To find out how much money we have after one year, finditite
on thez-axis and go up to the lin¢(z). The height of that line (which will b&10)
represents how much we’ll have after one year. But now we aviike to put thatl 10
back into the functiory, so we need to find10 on thex-axis and look above that.

But what this amounts to is copying thyevalue (the height of the line from theaxis
to the line f(x) to thez-axis. Here is where the ling = = suddenly becomes useful:
If we begin at the poin{100, 110) and move horizontally to the ling = z, we will
be situated exactly over the valu¢0 on thezx-axis (since on the ling = z, they-
coordinate is the same as thecoordinate). Since we're already exactly ovéd, we
can just go up from there to the lin€x) to find the value of our investment after two
years:$121.

To find the value after three years, we can do the same thimgheight of the point
(110, 121) needs to be copied to theaxis, so move right from that point {621, 121),
putting us oveil 21 on thez-axis, and from there, we go up f§121) to find the amount
after three years§133.10.

The same process can be used for each year, and the final bigiightzig-zagging line
at the upper-rightmost point represents the value of thgirai $100 investment after
six years: abou$177.16.



3 General Iteration

A little thought shows us that there is nothing special alibatf (z) we used in the
previous section in a graphical interpretation. We can dest Wappens with the cosine
function mentioned in the introduction, by using exactly #ame sort of graph, except
that f (z) = cos(z) and we will begin our iteration with: = 1:
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Although the picture looks different (instead of a zig-zienggine, we've got a spiral),
exactly the same thing is going on. We begin with an inputeaftn: = 1, we go up

to the liney = cos(z) to find the result of one press of the cosine button. The height
of that point has to be used as an input, so we move horizgritalin it to the line

y = x, at which point we’re above a pointwhich is equal to the-coordinate of the
point (1, cos(1)). Move vertically from there to the ling = cos(z), then horizontally
toy = x, and repeat as many times as desired. It should be clear freitiustration
that as more and more iterations are performed, the spithtaiverge to the point
where the liney = = meets the curvg = cos(x), and that point will have a value of
approximately.739085133215, .739085133215).

The major difference between the two examples is that it Ishbe clear that in the
case of bank interest, the zig-zag line will keep going tortgbt and up forever, the
spiraling line for the cosine function will converge moradanore closely to a limiting
point. What we would like to do is examine the geometry of theves f(x) that
either causes them to converge (like the cosine curve) oiverge (like the bank
interest function). We'd also like to know if there are otlparssibilities (other than
convergence or divergence). We will examine graphicallyaiber of examples in the
next section.



4 Graphical Examples
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Every example on the previous page shows what happens fatieupar function of
x, assuming two different starting points. All of the funcetsoon that page are linear
(straight lines) and they illustrate the convergence (eemjence) properties. All the
examples have the linge= f(z) crossing the ling = = at (.5, .5). Basically, the only
difference between the different functiofiss the slope of that line. We call the point
of intersection ofy = f(z) andy = x a “fixed point”, since if the input happened to
have exactly that value, the output would be the same, or.fixed

In the example on the upper left we have basically the santeosituation we had
with the bank account balance except that in the bank balzass, the two lines met
at(0,0). In this case, if we start a bit above the intersection, ordfigeint, the values
diverge, getting larger and larger. If we begin below theiis¢ction, the values diverge,
but to smaller and smaller values. The slopg ©f) in this example id.2.

On the upper right, the slope ¢fz) is 0.8, and now the iterations converge to the fixed
point from both directions.

The example on the middle left is similar, but the slope is:lemly0.4. The conver-
gence is the same, from above or below, but notice how mutérfagonverges to the
fixed point.

The next three examples show what happens when has a negative slope. The
example on the middle right, the slope is negative, but mmsteep (in fact, it is-0.8).
Convergence occurs from any starting point, but insteadg®agging to the fixed
point, it spirals in.

The example on the bottom left shows a very special case wherslope off(x)
is exactly—1. In this case, from any starting point there is neither cogsemrce nor
divergence; the output values fall into “orbits” of two vaki

Finally, in the example on the lower right, the slope is negednd steeper than1.0,
and any input, except for the fixed point itself, will diveligea spiral pattern, as shown.

The examples on the previous page pretty much cover all thsilpibties for linear
functionsf(z). If the slope, in absolute value, is less tharterations converge to the
fixed point. If the slope’s absolute value is greater thaihdiverges, and if the slope’s
value is equal td or —1, there is a fixed orbit of one or two points. (Note that the
function with slopel is y = f(x) = x which is identical to the lingg = z, so every
point is a fixed point whose orbit contains exactly that ppint

It will turn out that if the functionf is not a straight line, the resulting situation is
usually not too different. Compare the example of the coiinetion with the similar
example on the middle right. In both cases the slopes of tineécline) are negative,
but between-1 ando.

In the next section we will examine more complex situatiohgre the iteration results
are not quite so simple.



5 More Graphical Examples
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Here are four more examples. The graph in the upper left stiatthere may be more
than one fixed point.

The other three illustrate limit cycles. In the examplesiatipper right and lower left,
different starting points converge not to a point, but to eleyOn the upper right, the
cycles first step inside the limiting cycle and then spirdl da the lower right, one
cycles in while the other cycles out.

Finally, the example in the lower right shows that there mayrany limiting cycles,
and the particular cycle into which a starting point fallpeeds on the position of the
starting point.
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The figure above shows another interesting example. The ¢y is actually tangent
to the linex = y, and initial values less than the point of tangency convérgeat
point, while initial values larger than it diverge.

You may find it interesting to try to construct examples withmbinations of fixed
points, cycles and sequences that diverge.

6 A SimplePractical Example

Suppose you want to approximate the square root of a nuntyesxampley/3. The
following strategy works:

Make a guess, say. If z is the correct answer, thert = 3, and another way of saying
thatis:z = 3/x. If  is not the exact square root, therxifs too small 3/z will be too
large and vice-versa. Thus the two numbeesd3/z will lie on both sides of the true
square root, and thus their average has to be closer to theduare root than either
one of them.

If = is not the exact square root, then the valye= (x + 3/z)/2 is closer to the
square root tham was. We can then use, as a new guess at the square root and
repeat the procedure above as many times as desired to olaiegrand more accurate
approximations. The following illustrates this method todfiy/3, starting with an
initial guesszy = 1, and approximated to 20 decimal places. The final line dyspla
the actual result, again accurate to 20 decimal places:

2o = 1.00000000000000000000
21 = (x0 4+ 3/20)/2 = 2.00000000000000000000
29 = (x1 4 3/x1)/2 = 1.75000000000000000000
x5 = (12 +3/22)/2 = 1.73214285714285714286
x4 = (x5 4+ 3/x3)/2 = 1.73205081001472754050



x5 = (x4 4 3/14)/2 1.73205080756887729525
V3 = 1.73205080756887729352

The fifth approximation is accurate to 17 decimal places. &sgan see, this method
converges rather rapidly to the desired result. In fachaaigh we will not prove it
here, each iteration approximately doubles the numberaifd places of accuracy.

Obviously, what we are doing is iterating the functipfx) = (z + 3/x)/2 and ap-
proaching the fixed point which will be the square rooBofAlso, obviously, there is
nothing special abowt. If we wanted to approximate the square roohpfvheren is
fixed, we simply need to iterate the functigte) = (z + n/x)/2.

On the following page is a graphical illustration of the cergence of the iterates of
f(z) as described above, beginning with an initial guess ef 1. After the first few
steps, due to the flatness of the curve, you can see that thergemce is very rapid.
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An interesting strategy that can be performed on almost @msited function is this:
we can double the speed of the convergence using a diffarectiébn. In the example
above, we approximated3 by iteratingf(z) = (22 + 3)/(2x). Suppose we iterate
f(f(z))? That should go twice as fast. In this case,

2
(ﬁ) +3
2z
f(f(z)) = W
A little algebra yields: A 2
i+ 182249
f(f(x)) = T4 1 32)

Iterations of that function are shown below, and it's ob@dliat the new function is a
lot flatter, so convergence will be a lot faster.

Obviously, there is no reason we couldn’t do the algebraHlogd, four or more it-
erations in the same way. The disadvantage, of course, tishtbdunctions that we
evaluate are more complicated, so the calculation timedoh step may increase more
rapidly than the time gained.



Here are three iterations to 30 decimal places of the fungtig(«)) calculated above,
beginning with a (bad) initial guess af

F(4) = 1.81907894736842105263157894737
F(f(4)) = 1.73205205714701213020972696708
FF(F(4)) = 1.73205080756887729352744640016
V3 = 1.73205080756887729352744634151

|

\

31 \“

2 \\\,,_=4’777,,,,”

7 Newton’s Method

The method of approximating a square root used in the prewection is just a special
case of a general method for finding the zeroes of functions.

2.0~

Newton’s method works as follows. (See the figure above.)p8s@ that the curved
line represents a function for which you would like to find tie®ts. In other words,
you want to find where the function crosses thaxis. First make a guess. In the
figure, this initial guess is = —0.2. Find the point on the curve corresponding to that

10



guess (which will bez, f(z))) and find the tangent line to the curve at that point. That
tangent line will intersect the-axis at some point, and since the tangent line is a rough
approximation of the curve, it will probably intersect nedrere the curve does. In the
example above, this will be at approximately= —0.84.

We then iterate the process, going from that intersectiantpo the curve, finding
the tangent to the curve at that point, and following it to vehi¢ intersects the-axis
again. In the figure above, the tangent line and the curveceserslar that it's almost
impossible to see a difference between the curve and thestintbe intersection of that
line and ther-axis is almost exactly the root of the function. But if ndtgfprocess can
be iterated as many times as desired.

In the example above, we are trying to sof(e) = z* — 422 + x + 2 = 0. The initial
guess istg = —0.2, the second ig; = —0.839252, and the third isco = —0.622312.
To show thatz, is very close to a root, we havé¢(—0.622312) = —0.0214204.

To find the equation of the tangent line requires a bit of dakubut assume for a
moment that we can do that. In fact, for well-behaved fumgjche numbey’(zx)
represents the slope of the functif) at the point(z, f(x)).

If a line passes through the poifi,, yo) and has slopen at that point, the equation
for that line is:

Y — Yo = m(z — xo).
This is usually called the “point-slope” equation of a line.

In our case, the initial guess will b, yo will be f(z¢) andm = f'(z(). (Remember
that f'(x¢) is the slope of the function dtg, f(z0)).) The equation for the tangent
line will thus be:

y— f(zo) = f/(/l?o)(fC — Z0).

This may look confusing, but there are only two variablesvaha andy. All the
others:xg, f(xo) andf’(x) are just numbers.

We want to find where this line crosses thaxis, so seyy = 0 and solve forz. We
obtain:

f(zo)
f'(zo)’

and this equation is used to obtain successive approxinstising Newton’s method.

r =9 —

But as before, all we are doing to find better and better appratons for the root of a
function is to iterate a particular function. The solutioin the equation above serves
as the next guess for the root pfz) = 0.

Let us show the graphical interpretation of the iteratioagfgrmed to use Newton’s
method to find the cube root of a number; say, the cube root of 2.

In this case, we would like to solve the equatjti) = 2* —2 = 0. If you don’t know
any calculus, take it on faith that the slope function (ahtlee “derivative” in calculus)
is f/(x) = 322

11



If we start with any guess,, the next guess will be given by:

o~ 1/ (zo) -0 322 3a?

f(zo) oy —2 22} +2

The figure at the top of the next page represents the iterafidine function above
(beginning with a particularly terrible first guessaf = .5) that approaches the cube
root of 2, which is approximately.25992105.
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8 Continued Fractionsand Similar

Sometimes you see mathematical objects like these:

What do they mean? The usual interpretation is that eactesgijon can be terminated
after one, two, three, four, ...steps, and the terminatedda@an be evaluated. If the
evaluations tend to a limit, then the infinite expressiomisripreted to be that limiting
value.

For example, in the first case above, we could evaluate:

V1 = 1.000000000

V1+vV1 = 1.414213562
1+\1+V1

12
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1.598053182

ohfia

The second case (which is called a “continued fraction”)lmaevaluated similarly.
Both, however, can be evaluated using function iterationels In the first case, if we
have the value, for a certain level of iteration, the next level can be ohediby cal-
culating f(zo), wheref(z) = +/1 + x. For the continued fraction, the corresponding
value of f(z) would bef(xz) = 1/(1 + z). Below are the graphical iterations. On the
left is the nested square root and on the right, the contifraetion. Both begin with
an initial approximation of 1;
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Notice that there is another way to evaluate these expressissuming that the limits
exist. In the first case, if we let:

x-\/l—i—\/l—i—\/l—l-\/l—l—_...’

then a copy of: appears inside the expression foand we have:

=1+
Squaring both sides, we obtaifl = 1 + z, which has as a root the golden ratio:

T = ! +2\/5 = 1.61803398874989484820458683437

Similarly, if « is set equal to the continued fraction, we can derive:

r=1/(1+a),

13



Which becomes? + z = 1, and has the solution:

Vb —1
2

xr=

= .61803398874989484820458683437,

one less than the golden ratio.

9 Optimal Stopping

Thanks to Kent Morrison, from whom | stole this idea.

Suppose you want to score as high as possible, on averageyah@lay the following
game. The game goes farrounds, and you know the value nfbefore you start. On
each round, a random number uniformly distributed betweand1 is selected. After
you see the number, you can decide to end the game with thdtenas your score, or
you can play another round. If play up to the round, then you get whatever number
you get on that last round. What is your optimal strategy?

The topic is called “optimal stopping” because you get tadiewhen to stop playing.

As with most games, it's usually a good idea to analyze sincpkes first, and the
simplest of all is the “game” when = 1. It's not really a game, since once the
number is selected, and since there are no more rounds, Yobenstuck with that
number. Since the numbers are uniformly distributed betvieand 1, your average
score, whem = 1,is1/2.

Let us give a name to the expected value of your score for a gatheip ton rounds
asE,,. From the previous paragraph; = 1/2.

What about ifn = 2? What isE5? On the first round a number is chosen, and based
on that number, you can decide to use it as your score, or tamdist and play one
more round. If your initial score is less thap2, it's clear that you should play again,
since on average playing the final round will yield, on averagscore of /2. But if
your initial score is larger thah/2, if you discard it, you'll do worse, on average.

So the optimal strategy for = 2 is this: Look at the first score. If it's larger than2,
stop with it. If not, discard it, and play the final round. Wi&tyour expected score
in this game? Half the time you will stop immediately, anccsityou know your score
is abovel /2 it will be uniformly picked betweeri /2 and1, or in other words, will
average3/4. The other half of the time you will be reduced to playing tkeng with
n = 1, which you already solved, and your expected score therbwill/2. So half
the time you'll averag8/4 and half the time you’ll averagk/2, yielding an expected

value forn = 2 of:
E _ ! 3+
2797

5

11
2 2 8

What isE3? After the first round, you have a score. If you discard thatescyou will
be playing the game with onBrounds left and you know that your expected score will
be5/8. Thus it seems obvious that if the first-round score is latfgem5 /8 you should

14



stick with that, and otherwise, go ahead and playsthe 2 game since, on average,
you'll get a score of/8. Thus5/8 of the time you'll play the game with = 2 and
3/8 of the time you stop, with an average score midway betvig8rand1, or 13/16.
Expected score will be:

The same sort of analysis makes sense at every stage. Inrtteevgith up ton rounds,
look at the first round score, and if it's better than what yoexpect to get in a game
with n — 1 rounds, stick with it; otherwise, play the game with- 1 rounds.

Suppose we have laboriously worked dtit, E», E3, ...E,_; and we wish to cal-
culateE,,. If the first score is larger thaf,, 1, stick with it, but otherwise, play the
game withn — 1 rounds. What will the average score be? Wel; E,,_; of the time
you'll get an average score mid-way betwden ; andl. The otherF,,_; of the time,
you'll get an average score @f,, ;.

The number mid-way betwees, _; and1 is (1 + F,,_1)/2, so the expected value of
your score in the game with rounds is:

1 + En—l
2

1+E2_,

En:(l_En—l)'( 5

) +En—l : En—l =

Notice that the form does not really dependrorilo get the expected score for a game

with one more round, the result is just+ E?)/2, whereE is the expected score for

the next smaller game. We can check our work with the numbersalculated fo;,

E5 andE5. We know thatt; = 1/2, so
14172 5

E2 #—g,andEgz

so we seem to have the right formula.

1+(5/8) 89
2 128’

Notice that to obtain the next expected value, we simply takgrevious one and plug
it into the functionf(z) = (1 + 2?)/2, so basically we just iterate to find successive
expected values for successive games with langétere are the first few values:

1
Ey = 5 =0.50000
5
By = £=062500
89
By = 5o~ 0.695313
24305
E, = =22 74173
4 32768
1664474849
Es = Sia7asseas = 710082
7382162541380960705
E. = ~ .800376
6 9223372036854775808
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As before, we can look at the graphical display of the itergtand it's easy to see from
that that the average scores increase gradually up to algnalue ofl:
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10 Biology: Heterozygote Advantage

Some knowledge of probability is required to understansi skiction. A little biology
wouldn't hurt, either.

The canonical example of this is the presence of the genetheses sickle-cell ane-
mia in humans. Basically, if an individual has this diseaséslie will not live long
enough to have children. Normally, genes like this are elateéd from the population
by natural selection, but in human populations in Africa tfene is maintained in the
population at a rate of abowt%. In this section we will see why.

The sickle-cell trait is carried on a single gene, and thezdvao types:A, the normal
type, does not cause anemia. The sickle-cell gene is calldgivery individual has
two copies of each gene (one from the mother and the othertierfather), so there
are three possibilities for the genotype of an individuél, Aa, or aa. Suppose that
at some point, there is a proportipnof gene A in the population and a proportion
q =1 — p of the gener.

We will simply assume that in the next generation that theegemme thoroughly mixed,
and therefore, at birth, the three types of individuals agbear with frequencigs
(of type AA), 2pq (of type Aa) andg? (of typeaa).

But years later, when it is time for those individuals to lohesl of the ones of typea
are dead. In other words, genotypeis a recessive lethal gene.

It may also be true that the individuals of typésl and Aa have different chances of
survival. We don’t know exactly what these are, but let us$ §ay that individuals of
type AA are(1 + s) times as likely to live as individuals of typéa. As childbearing
adults then, we will find1 + s)p? individuals of typeA A for every2pq individuals of

16



type Aa.

We'd like to count the total number af genes in the next generation. They can only
come from thepq proportion having typeda, and only half of the genes from those
people will bea since the other half are of typé. Thus there will be a proportiopy

of them. The total number of genes will Bél — s)p? + 2pq.

The proportion of: genes after breeding will thus be:

q/ _ pq
(1+s)p? +2pq

But genes are either of typ&or a, sop = 1 — ¢ and we have:

/= (1 -a)g _ q
(I+s)(1-¢)2+2¢(1—q) (1+s)(1-¢q) +2q

To obtain the proportion of genes in each successive generation, we simply have to
put the value of into the equation above to find the new valgfdn the next generation.

To find the proportion after ten generations, just iteratd¢irh@s. This is just another
iterated function problem!

Let’s look at a few situations. Suppose first that the individuals and theda indi-
viduals are equally fit. There is no disadvantage to havirigglescopy of thez gene.
Thens = 0, and the function we need to iterate looks like this:

q

q/:f(Q):m-

Let’s assume that for some reason there is a huge propoftiogenes, sag0%. Here
is the graphical iteration in that case:

1.0 s
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Notice that the fixed point is at zero, so with time, the sietddl gene should be elim-
inated from the population. In other words, the probabilitst ana gene will appear
drops to zero.
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Now suppose that even having a single copy ofdlgene is a disadvantage. Suppose
that it is20% more likely that an4 A individual will live to breeding age than afa
individual. This makes = .2, and the corresponding graphical iteration looks like
this:

0.8
0.6\~

04 /

0.2

oo o vy
0.0 0.2 0.4 0.6 0.8 1.C

Not surprisingly, the sickle-cell gene is again driven ofthe population, and if you
compare the two graphs, you can see that it will be driven outennapidly (fewer

generations to reduce it the same amount) in this second\béttethe same number of
iterations, the gene is about half as frequent ifAh&individuals have 20% advantage
over theaa individuals.

But in the real world, something else happens. In Africa wtikere is a lot of malaria,
individuals with a single copy of the sickle-cell gene (widuals of typeAa) actually
have an advantage over those of tyhé because they have a better chance of surviving
a case of malaria. We can use the same equation, but simply snaégative. Let's
look at the graph witls = —.3:
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Now notice that; tends to a non-zero limit, in this case, a bit more tBa%. In other
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words, the advantage to the individuals who have a singlg obfhea gene is enough
that the certain deaths af: individuals is not enough to eliminate the gene. In fact,
a value ofs = —.3 is not required; any negative value fewould make this occur,
although a smaller advantage 4# would translate to a smaller limiting value @f

As in every other case we've looked at, we could find the exadtihg value by setting
7 =q
¢ =q= 1 -
(1-3)(1-¢q)+2q

If we solve that forg, we obtain:g = .23077: a bit more thar23%, as we noted above.

Individuals with two copies of the same gene (likeor AA) are called homozygous,
and individuals with one copy of each type are called hetagotes. In the case of the
sickle-cell gene in a malarial area, there is a heterozyapbtantage; hence, the title of
this section.

11 Markov Processes

To understand this section you will need to know somethinguaimatrix multiplica-
tion and probability.

Imagine a very simple game. You have a board that is nine sgu@ang with a marker
beginning on the first square. At each stage, you roll a sidgdeand advance the
marker by the number of steps shown on the die, if that is plessiThe game is
over when you land on the ninth square. You cannot overshedgst square, so, for
example, if you are on squafeand roll a6 the marker stays in place because you
cannot advance six spaces. In other words, in order to fig@hneed to land on the
last square exactly. With this game, we can ask questioas‘lifow likely is it that
the game will have ended afterolls of the die?”

Up to now we have been looking at one-dimensional iterababnow we will look at
a multi-dimensional situation. At every stage of the garhere are exactly 9 possible
situations: you can be on square 1, square 2, ..., square theAieginning of the
game, before the first roll, you will be on square 1 with prdliighl. After the game
begins, however, all we can know is the probability of beingrarious squares.

For example, after one roll there isld6 chance of being on squares 2, 3, 4, 5, 6, and
7, and no chance of being on squares 1 or 8, et cetera.

We can, however, easily write down the probability of movirgm square to square
jonaroll. For example, the chance of moving from square 1 tausg4 isl /6. The
probability of moving from square 4 to itself /6 = 2/3, since only rolls of 1 or 2
will advance the marker. Rolls of 3, 4, 5 or 6 require impokgsiboves, beyond the
end of the board. We can arrange all those probabilities imixthat looks like this:
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M =

OO OO OO o oo
OO OO OO o ool
OO O OO O oo
O O O O Oolol-ol—o—
O O O OwIFoFo|=O| o =
O O OnNlFoI—o—o o -o =
O O WIS [~ o [ = [ o | =
O olvo—o|—o Fo o =o = O
= OO O O o) o) = © O

The number in row and columry is the probability of moving from squaido square
j inasingle roll. We have put &in row 8, column 8, since if the game is over, it stays
over.

As we stated earlier, all we can know is the probability otiggtto various squares
after a certain number of rolls. At any stage there is a prilibabf being on square 1,
2,3,...,9. We will write these in a row vector, and that vegdtatially (at time zero),
looks like this:

Py =(1,0,0,0,0,0,0,0,0).

In other words, we are certain to be on square 1.

The nice thing about the matrix formulation is that givenstrithution of probabilities

P of being on the 9 squares, if we multiply by M (using matrix multiplication), the
result will be a newP’ that shows the odds of being on each square after a roll of the
die. To calculate the probabilities of being on the varioggeses after 10 rolls, just
iterate the matrix multiplication 10 times.

To show how this works, let us call the probability distrilomis after one rollP;, after
two rolls P,, and so on. Here are the numeric results:

i (0,0.166667,0.166667, 0.166667, 0.166667, 0.166667, 0.166667, 0, 0)

p2 = (0,0,0.027778,0.083333,0.138889, 0.194444, 0.25, 0.166667, 0.133889)

ps = (0,0,0,0.0185185,0.0648148,0.138889, 0.240741, 0.25463, 0.282407)

ps = (0,0,0,0.003086,0.0246914, 0.0833333,0.197531, 0.289352, 0.402006)

ps = (0,0,0,0.000514,0.0087449, 0.0462963, 0.150206, 0.292567, 0.501672)

ps = (0,0,0,0.000086,0.0030007,0.0246914,0.109396,0.278099, 0.584727)
( )

pr = (0,0,0,0.000014,0.0010145,0.0128601, 0.077560, 0.254612, 0.653939

If we look at the last entry ip7, we can conclude that after 7 rolls, there is a slightly
better thar65% chance that the game will be over.

Note that this game is incredibly simple, but much more caécaptd situations can
be modeled this way. For example, imagine a game where sorte afquares are
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marked, “Go to jail”, or “Go forward 4 steps”. All that woulcetaffected would be the
numbers in the array/. For a board with 100 positions, the array wouldlbé x 100,
but the idea is basically the same.

Suppose you are designing a board game for very young childfeu would like to
make sure that the game is over in fewer than, say, 50 movegscould simply
make an array corresponding to a proposed board, iteratsoae cand make sure that
the game is very likely to be over in 50 moves.

12 Final Beautiful Examples

In Section 7 we learned how Newton’s method can be used toffenbots of functions
as long as we are able to calculate the slopes of the functibasy point on the
curve. In this final section, we are going to do the same thinginstead of restricting
ourselves to the real numbers, we are going to seek roots icaimplex plane.

We will use Newton’s method to find the roots et = 1 — in other words, we will
find the cube root of. On the surface this seems silly, because isn’t the cubeofdot
equal tol? Well, it is, but it turns out that has three different cube roots. Here’s why:

P —1=(@x-1)(?+z+1).

If we set that equal to zero, we get a root if either 1 = 0 orif 22 + 2 +1 = 0.
The first equation yields the obvious rant= 1, but the second can be solved using
the quadratic formula to obtain two additional roots:

—14++3i —1—+/3i

wherei is the imaginary/—1. If you haven't seen this before, it's a good exercise to
cube both of those results above to verify that the resulbith bases ig.

If you plot the three roots, they lie on an equilateral trignzpntered at the origin.

Since we will be working with complex numbers, we will chartbe variable names
to be in terms of: instead ofz. This is not required, but it is the usual convention,
and it constantly reminds us that the variables are not sacdgsrestricted to be real
numbers.

As we derived in Section 7, i is an initial guess for the cube root, the next approxi-
mation,z;, can be obtained as follows:
228 +1
zZ1 = 5 -
3z

(Actually, this is not exactly the same, since we are tryimdind the cube root of
instead o as we did in the previous section, but the only differenchas the constant
2 in that section is replaced bylahere.)
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The other difference, of course, is that we want to allgvandz; to take on complex
values instead of just real ones. The calculations are adsisy but straightforward
(see Appendix A for details). As an example, consider perfog the iteration above
when the initial value is9 + .43:

zo = 09404

z1 = 0.830276 + 0.0115917¢
zg = 1.03678 — 0.00576866¢
z3 = 1.00126 — 0.0003951177
zg = 1.00000, —.0000009935¢

It is fairly clear that the sequence above converges to theze= 1. Let's try one
more, beginning at-1 + 4:

0 = —1.0+1.0i

21 = —0.666667 + 0.833333i
2z = —0.508692+ 0.8411i

z3 = —0.49933 + 0.866269i
2z = —0.5+ 0.866025i

Itis clear that this one convergese= (—1 + /3i)/2 = —.5 + .866025i.

What makes Newton’s method in the complex plane interessirtgat many initial
values lead to multiple interesting jumps around the plagi®re they converge to
one of the roots. In fact, if we look at every point in the plaral color it red if it
converges td, color it green if it converges to-1 — 1/3)/2 and blue if it converges
to (—1 4+ v/3)/2, then the region around the origin-(.6 < z,y < 1.6) would be
colored as in the following illustration. The white dots imetred, green and blue
regions represent the three roots of the equation 1 = 0.
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Just because it's another pretty picture, here is anothagénwhich corresponds in
exactly the same way as the previous one to the use of Newtretlsod to solve the
equationz* — 1 = 0. This time there are four rootd;, —1, < and—i, and the colors
correspond to regions of input values that will eventuatigverge to those roots.
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Finally, here’s exactly the same thing, but solutiongdf- 1 = 0:
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A lteratesfor Newton’s Method

To iterate the function representing Newton’s method fergblution in the complex
plane of the equation® — 1 = 0, we must be able to compute:

2,28’ +1
Z1 = 2
3z

wherez is given.

We write zo = x + yi, wherez is the real part oty andy is the imaginary part. Then
we have:

2(x +yi)® +1

. 3(x + yi)?

2(x® + 3z%yi — 3xy? — 3y%i) + 1
S 3(x2 + 2xyi — y?)
o = (22% — 6zy® + 1) + (62%y — 2y3)i

(3z% — 3y?) + (6xy)i

The fraction above has the form:

a—+bi

7= ——,
! c+ di

wherea = 223 — 6xy? + 1, b = 622y — 2y3, ¢ = 322 — 3y? andd = 6zy. We have:

_a+bi (a+bi)(c—di)
AT exdi T (c+di)(c—di)
(ac+ bd) + (be — ad)i
o (&2 1 &)
ac + bd bc —ad\ .
S (02+d2)+(c2+d2)2

and the final line shows us how to calculate the real and inaagiparts ofz; in terms
of the real and imaginary parts of.

Let’s illustrate this withzy = —1 + ¢ which was an example in Section 12. We have
x = —1 andy = 1. We then have:

(=2+6+1)+(6-2)i

= (3-3)_6i
Soa =5,b=4,c=0andd = —6, yielding:

-2 30, 2 5
36 B ’

= 36" 376
which is what we obtained earlier.
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