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Geometry of Surfaces and

the Gauss–Bonnet Theorem

1. Surfaces.

Plane MaskSphereCylinder

2. Topology vs. Geometry.

Which of the shown surfaces can be deformed into each

other (i.e. transformed into each other without cutting

or pasting) and which cannot?

Those that can are said to have the same topology.

Make cuts in a sheet of paper to obtain a surface having

the same topology as the mask.

The resulting sheet of paper and the mask will still

have different geometry. Indeed, in geometry, exact

shapes and sizes matter. Deforming (such as stretching)

changes shapes and sizes.
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3. Bent or Curved?

A sheet of paper can be bent in space to form a new

shape. The following experiment illustrates the fact that

bending does not change intrinsic geometry of the sur-

face (i.e. distances and angles as they would be measured

by creatures that cannot leave the surface).

Wrap a cylinder with a sheet of paper, stretch a shoelace

as shown, and trace it with marker. Then unwrap the pa-

per — the trace will be a straight line.

Find a solid object that has the shape of a cone and

try the same experiment with it. What do you find?

Try to wrap a hemisphere with a sheet of paper — and

fail! This is because the sphere is curved.

Curvature is what prevents one surface being wrapped

around another without stretching or wrinkling. It is an

intrinsic geometric property of a surface and does not

disappear under bending.
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How to quantify curvature?

Question: Are spheres of different radii curved dif-

ferently?

Try (or imagine!) cutting out pieces of two different

size rubber balls and wrapping one about another without

stretching of wrinkling.

4. The Method. The following picture illustrates

the main idea: A smooth surface can be approximated

with a polyhedron, i.e. a surface formed by flat poly-

gons connected at their sides and vertices.

Visit http://www.vismath.de/vgp/content/surfaces/

and play with the applet Sphere to see how polyhedra

with more and more faces (which become smaller and

smaller) provide better and better approximations to the

surface and make it look smoother and smoother.

All geometric properties of surfaces should somehow

be seen in geometric properties of polyhedra.
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5. Curvature Resides at Vertices. From any

polyhedron, cut out a piece of the surface that contains

no vertices. Then it is possible to unbend the piece along

edges to make it lie flat on the plane.

In the contrary, even a small piece around a vertex will

hardly lie flat on the desk (unless cut or folded).

6. The Angular Defect. To be made of a flat

piece of paper, the corner near a vertex of a polyhedron

must have the adjacent angles adding up to the full angle,

i.e. 360◦.

The difference

360◦ − sum of angles at a vertex

is called the angular defect of the vertex.

The angular defect of a vertex is the measure of the

amount of curvature residing at this vertex.
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zero angular defect

negative angular defect

positive angular defect

Control question: When the bird-like corner at

the left bottom picture flaps its wings, does the angular

defect change?

Brain-teaser: Gift bags have four corners at the

bottom, but are sold folded flat. Examine such a bag

and explain how this is done.
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7. Total Angular Defects. Fill in the table.

6360 240

Angular defect
of each vertex

(Semi)regular
 polyhedron

Number of
vertices

Total angular
   defect

Soccer ball

Dodecahedron

Icosahedron

Cube

Octahedron

Tetrahedron

  prizm
Triangular 360 90  6090 

120
120 6 720

8. Why is the total defect the same? Let

V , E, and F denote the numbers of vertices, edges, and

faces of a given polyhedron. By definition,

Defect of one vertex = 360◦− Sum of angles at this vertex.

Summing up we find that

Total defect of all vertices =

360◦ × V − Sum of all angles at all vertices.
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Remember this. Now change the point of view. The sum

of all angles at all vertices is the same as the sum of all

angles in all faces.

From the picture we see that

Sum of angles in one face =

180◦ × Number of sides of this face − 360◦

Summing up we find that

Sum of angles of all faces =

180◦ × Total number of sides of all faces − 360◦ × F.

Taking in account that each edge is a site to exactly two

faces, we can rewrite this result this way:

Sum of all angles at all vertices = 360◦×E − 360◦×F.

Now combine this with what was asked to remember.

Theorem. Total angular defect = 360◦×(V −E+F ).
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9. Geometry vs. Combinatorics. Let us call

the total angular defect of a polyhedron P divided by

360◦ the Gauss number of P , and V − E + F the

Euler number of P . The Gauss number characterizes

geometry of P while the Euler number characterizes the

combinatorics of P . The theorem says that for every

polyhedron P ,

The Gauss Number of P = The Euler Number of P .

Thus combinatorics of a polyhedron puts constraints on

geometry of this polyhedron, and conversely, geometry

of a polyhedron puts constraints on combinatorics of it.

This relation between geometry and combinatorics is re-

markable but not surprising. Now we will deduce from it

that, given any two polyhedra, P and T ,

The Gauss Number of P = The Euler Number of T ,

if only P and T have the same topology.

For this, we will construct two polyhedra, P
′ and T

′,

which have the same combinatorics (and possibly differ-

ent geometry), and such that P
′ has the same geometry as

P (and possibly different combinatorics), and T
′ the same

geometry as T (and possibly different combinatorics).

The idea is very simple. Partitioning faces of a given

polyhedron into smaller faces changes combinatorics of

it, but does not change geometry. Therefore the Gauss
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number does not change, and by the theorem the Euler

number remains the same too.

The idea is illustrated here in the example when P is

a rectangular box, and T is a tetrahedron. Since P and

T have the same topology, we can draw a picture of T on

the surface of P (see the left figure, where thick dots show

vertices of T on the surface of P ). The edges of P and

the lines connecting the thick dots form edges of a new

polyhedron which we call P ′. It has the same geometry as

P and in particular the same total angular defect, because

all newly created vertices have zero angular defects.

Exercise. On the left figure, locate 10 vertices of P
′

which are not those of P and show that each of them has

zero angular defect.

Now deforming P into T , we obtain the picture of P

drawn on the surface of T (the right figure). As in the

first case, all the lines partition faces of T into faces of the

new polyhedron, T
′, which has the same combinatorics

as P
′ but the same total angular defect as T .
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Exercise. Find directly the numbers V , E, F for P
′

(on the left figure) and T
′ (on the right figure) and check

that they coincide.

We conclude that (explain each equality!)

The Euler Number of P = The Gauss Number of P =

The Gauss Number of P
′ = The Euler Number of P

′ =

The Euler number of T
′ = The Gauss Number of T

′ =

The Gauss Number of T = The Euler Number of T .

We have proved

The Gauss-Bonnet Theorem for Polyhedra.

The Gauss and Euler numbers of every polyhedron are

equal to each other and depend only on the topology

of the polyhedron.

Corollary. If a polyhedron has the same topology

as the sphere, then its Euler number V − E + F = 2,

and the total sum of its angular defects is 720◦.

Brain-teaser. Compute the total sum of angular

defects of the polyhedron that has the same topology as

a torus, and compare the result with the Euler number

V − E + F .

Exercise. Find the Gauss and Euler numbers of ev-

ery polyhedron that has the same topology as the surface

of a pretzel.
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Torus Pretzel

10. Gaussian Curvature. We now return to ge-

ometry of smooth surfaces. Such surfaces can be approx-

imated by polyhedra with lots of tiny faces and lots of

vertices with very small angular defects. The sum of an-

gular defects of those vertices that lie in a region of the

surface characterizes curvature of this region. It is called

the Gaussian curvature of the region. If non-zero,

this region of the surface, however small, cannot be un-

bent into a piece of plane or wrapped by a piece of paper

without distortion or wrinkling.

By choosing better and better approximations of a sur-

face and applying the Gauss–Bonnet Theorem for Poly-

hedra, we obtain the following result.
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The Gauss-Bonnet Theorem for Surfaces.

The total Gaussian curvature of a closed surface de-

pends only on the topology of the surface and is equal

to 2π times the Euler number of this surface.

The factor 2π (instead of 360◦) occurs here because

Gauss measured the full angle not by 360◦ but by the

ratio, equal to 2π, of the circumference around the vertex

of the full angle to the radius of the circle.

Problem. Show that spheres have constant Gaussian

curvature (i.e. the same near all points of the sphere) and

find the value of the Gaussian curvature of the sphere of

redius R.

Historical remarks. The Gauss–Bonnet Theorem

for polyhedra that have the same topology as the sphere

was actually discovered by René Descartes (1596–1650).

Carl Friedrich Gauss (1777–1855) introduced the notion

of curvature, proved that it does not change under bend-

ing of surfaces, and established what we call the Gauss–

Bonnet Theorem for Surfaces. Pierre Ossian Bonnet (1819–

1892) found a generalization of this theorem that remains

valid for surfaces that are not necessarily closed (like

sphere, torus, or pretzel) but instead may have the same

topology as a disk, and may have boundary.
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