USAMO 2010 PREPARATION SESSION APRIL 6TH, 2010

Problem 1: Let *ABC* be a triangle such that $\angle A = 2 \angle B$. Prove that $a^2 = b(b+c)$, where *a*, *b*, *c* are length of sides *BC*, *AC*, *AB* respectively.

Problem 2: Find all integers m, n such that

$$3 \cdot 2^m + 1 = n^2$$

Problem 3: For non-negative integers a < b let M(a, b) be the arithmetic mean of $\sqrt{i^2 + 3i + 3}$ for $a \le i \le b$. Compute the whole part of M(a, b) as a closed form function of a and b.

Problem 4: Find all functions $f : R^+ \Rightarrow R^+$ such that

$$(1 + yf(x))(1 - yf(x + y)) = 1$$

for all $x, y \in \mathbb{R}^+$, where \mathbb{R}^+ is a set of all positive real numbers.

Problem 5: In subset A of set 1, 2, ..., 2010, the difference of any two elements is not a prime number. What is the maximum number of elements that can be in A.

Problem 6: Consider n > 2 checkers placed at the vertices of a regular n-gon. Each checker is colored red on one side and blue on another side. In one move, one can choose any three consecutive checkers and flip them up side down. A "situation" is any configuration of checkers (situations that are different only by a rotation, are considered different). How many situations can be reached from a given one with a finite number of moves?

Problem 7: Let a, b, and c be non-negative real numbers and x, y, and z be positive real numbers such that a + b + c = x + y + z. Prove that

$$\frac{a^3}{x^2} + \frac{b^3}{y^2} + \frac{c^3}{z^2} \geq a + b + c$$

Problem 8: Let O be the center of inscribed circle of an acute triangle ABC. Let points A_0 , B_0 , C_0 be the centers of circumscribed circles around triangles BCO, ACO, ABO respectively. Prove that lines AA_0 , BB_0 , CC_0 intersect in one point.

Problem 9: Prove that for any natural number k, there exists a natural number n such that n has exactly k different prime factors and $2^{n^2} + 1$ is divisible by n^3 .

Problem 10: Let I be the center of circle w inscribed in trapezoid ABCD. Sides AD and BC intersect at point R. Let P and Q be the tangent points of W with sides AB and CD, respectively. Let the line passing through P and perpendicular to PR intersect lines AI and BI at points A_0 and B_0 , respectively. Also, let the line passing through Q and perpendicular to QR intersect lines CI and DI at points C_0 and D_0 , respectively. Prove that $A_0D_0 = B_0C_0$.