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1. a) One Sunday, Zvezda wrote 14 numbers in a circle, so that each number
is equal to the sum of its two neighbors. Prove that the sum of all 14 numbers
is 0.

b) On the next Sunday, Zvezda wrote 21 numbers in a circle, and this time
each number was equal to half the sum of its two neighbors. What is the sum
of all 21 numbers, if one of the numbers is 3?

a) Denoting the numbers a1, a2, . . . , a14, and their sum as S we have ai =
ai−1 + ai+1 for i = 1, . . . , 14 (we take a15 = a1, a0 = a14). Summing all these
equalities we get S = 2S (since each ai appears exactly once on the left and
exactly twice on the right). Therefor S = 0.

b) Again, let the numbers be a1, . . . , a21. Let ai be maximal among the
numbers. Then we have ai ≥ ai−1, ai ≥ ai+1 and so ai ≥ ai−1+ai+1

2 . But

ai = ai−1+ai+1

2 , so both inequalities are actually equalities. Next, considering
now ai−1 we conclude ai+1 = ai+2. Proceeding in this way, we conclude that all
the numbers are equal. As one of them is 3, the sum of all numbers is 3∗21 = 63.

2. A grasshopper lives on a coordinate line. It starts off at 1. It can jump
either 1 unit or 5 units either to the right or to the left. However, the coordinate
line has holes at all points with coordinates divisible by 4 (e.g. there are holes
at -4, 0, 4, 8 etc.), so the grasshopper can not jump to any of those points. Can
it reach point 3 after 2003 jumps?

Each jump changes the parity of grasshopper’s coordinate. After 2003 jumps
the grasshopper will be at an even point on the coordinate line, and therefore
can not be at 3.
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3. The sets A and B and be form a partition of positive integers if A∩B = ∅
and A∪B = N . The set S is called prohibited for the partition, if k + l 6= s for
any k, l ∈ A, s ∈ S and any k, l ∈ B, s ∈ S.

a) Define Fibonacci numbers fi by letting f1 = 1, f2 = 2 and fi+1 = fi+fi−1,
so that f3 = 3, f4 = 5 etc. How many partitions for with the set F of all
Fibonacci numbers is prohibited are there? (We count A, B and B, A as the
same partition.)

b) How many partitions for which the set P of all powers of 2 is prohibited
are there? What if we require in addition that P ⊆ A?

b) We prove the following: Given a partition of the set of all powers of 2
(i.e. two sets Q and R such that each 2k is in exactly one of Q, R) there
exists unique partition A, B of positive integers with all powers of 2 prohibited
and with Q ⊆ A, R ⊆ B. Note that this implies that there are infinitely many
partitions of integers with powers of 2 prohibited, and exactly one such partition
with P ⊆ A.

First we show that required partition is unique if it exists. Without loss of
generality 1 is in A. Suppose now that we have been able to place all integers
up to some k unambiguously, i.e. for any l < k we know whether l is in A or in
B. If k is a power of 2 we know where to put it. Otherwise let 2i be the smallest
power of 2 strictly greater than k. Then d = 2i − k is positive and less than k
Therefore we know to which of two sets (A or B)the number d belongs. Then
we have no choice but to place k in the other set (otherwise k and d would be in
the same set, and since k +d = 2i this would contradict A, B being acceptable).
So there exists no more than one acceptable partition.

We now show that desired partition exists. Since we have already defined
above a recursive construction producing A, B, we just need to check that the
resulting partition is in fact acceptable. Suppose not. Then there exist n < m
such that n + m = 2i for some i and m, n are in the same set of the partition.
Then m is not a power of 2 (if it were, n would be greater than m). Note that
n < m implies that 2i is the smallest power of 2 strictly greater than m. Then
by construction m is in the set different from n. Contradiction. So there is
no such pair m, n. The partition constructed above works. This completes the
proof.

a) The proof is similar to that of part b. We will call a partition acceptable
if F is prohibited for it. First, we show that there exists no more than one
acceptable partition. Since we do not distinguish between A, B we may assume
without loss of generality that 1 is in A. Suppose now that we have been able
to place all integers up to some k unambiguously, i.e. for any l < k we know
whether l is in A or in B. Let fi be the smallest Fibonacci number strictly
greater than k. Then d = fi − k is positive and less than k (to see that, note
that if fi − k > k then 2k < fi, k < fi/2 ≤ fi−1, contradicting the choice of fi).
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Therefore we know to which of two sets (A or B)the number d belongs. Then
we have no choice but to place k in the other set (otherwise k and d would be in
the same set, and since k +d = fi this would contradict A, B being acceptable).
So there exists no more than one acceptable partition.

We now show that there actually exists an acceptable partition. Since we
have already defined above a recursive construction producing A, B, we just
need to check that the resulting partition is in fact acceptable. Suppose not.
Then there exist a smallest m such that n + m = fi for some n < m, and
m, n are in the same set (by renaming A and B if necessary we may assume
m, n are in A), i.e. the first m for which there is a problem with the above
recursive construction. Then if fj is as before the smallest Fibonacci number
bigger than m we have fj−1 ≤ m < fj which together with n < m gives
fj−1 < m+n < 2fj < fj+2. But m+n = fj is excluded by construction (recall
that m is assigned to the set other than that of fj − m). So it must be that
m + n = fj+1. On the other hand for m̂ = fj − m, n̂ = fj − n we have:

1. n̂ > m̂ > 0 and n̂ = fj − n < m, so the bigger of n̂, m̂ is less than the
bigger of m, n.

2. m̂ + n̂ = fj + fj − (m + n) = fj + fj − fj+1 = fj − fj−1 = fj−2.

3. m̂ is in B by construction.

4. n̂ is in B, because otherwise n̂, n will be a pair of elements of A adding
up to a Fibonacci number with the maximal element in the pair less than
m, contradicting our choice of m.

These observations together mean that n̂, m̂ is a pair of elements of B adding
up to a Fibonacci number with the maximal element in the pair less than m,
contradicting our choice of m. This contradiction shows that A, B constructed
above is indeed an acceptable partition.

4. The circle ω is drawn through the vertices A and B of the triangle ABC.
If ω intersects AC at point M and BC at point P . The segment MP contains
the center of the circle inscribed in ABC. Given that AB = c, BC = a and
CA = b, find MP .

Solution 1: Since AMPB is cyclic, ∠CMP = ∠CBA and ∠CPM = ∠CAB.
Therefore the triangle CMP is similar to the triangle CBA. Let CM = xCB =
xa, where x is the coefficient of similarity. Then CP = xCA = xb, MP =
xAB = xc. If I is the center of the circle inscribed in ABC and r - its radius,
we have the following equality for the areas: SCMP = SCMI + SCPI . But
SCMP = 1

2xaxb sinC, and SCPI = 1
2xbr, SCPM = 1

2xar. Plugging these in
and solving for x we get x = frac(b + a)rba sin C. But 1

2ab sinC = SABC =

(a + b + c)r. Hence x = a+b
a+b+c

, MP = c(a+b)
a+b+c

.
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Solution 2: Keeping the notation from the first solution, we have

MP = MI + IP = r

(

1

sin B
+

1

sin A

)

= r

(

ac

2SABC

+
bc

2SABC

)

=
c(a + b)

a + b + c
.

5. For which n is it possible to fill the n by n table with 0’s, 1’s and 2’s so
that the sums of numbers in rows and columns take all different values from 1
to 2n?

For odd n it is impossible to create a table like that. Indeed, in such a table
the sum of all column sums and row sums would be 1+2+ . . .+2n = n(2n+1),
and so would be odd. But it would also be twice the sum of all the numbers in
the table (each number counted twice - once in the column sum, once in the row
sum), and so would have to be even. This contradiction proves that no such
table exists.

For any even n such a table exists. If one takes 2k by 2k table and fills in all
the elements above the main diagonal (running from upper left to lower right
corner of the table) with 2’s, all the elements below the main diagonal with 0’s,
first k elements on the diagonal with 1s and the last k elements on the main
diagonal with 2’s one gets a table that satisfies the conditions. Indeed, the sums
of elements in the first k rows (top to bottom) are 4k − 1, 4k − 3, . . . , 2k + 1,
the next k rows - 2k, 2k− 2, . . . ,2. The sums of elements in the first k columns
(left to right) are 1, 3, . . . , 2k − 1, the next k columns - 2k + 2, . . . , 4k. We
see that all the numbers from 1 to 4k appear exactly once, as wanted.
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