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1. Consider a polyhedron with n vertices. Since a polyhedron is a three
dimensional figure, the smallest number of edges emanating from a
vertex is 3. Also, since there are n vertices the greatest number of
edges emanating from a vertex is n − 1. By the pigeonhole principle,
since there are n− 3 possible degrees for a vertex and n vertices, there
will be at least two with the same degree.

2. Consider any line in the plane not going through any of the given points.
By the extended pigeonhole principle, there will be at least 7 points
on one side of the line. Consider the following subsets of the points:
{P1, P2}, {P3, P4}, {P5, P6}, {P7, P8}, {P9, P10}, {P11, P12}, {P13}.
By the pigeonhole principle (since there are 7 sets that partition the
points) on that side of the line there will either be one point in each of
the sets or two points in some set.
Case 1: There are two points in some set. Then the segment connecting
those two points does not intersect the line.
Case 2: There is one point in each set. Then P13 is on the side of the
line with more points. If P12 or P1 is on that same side then we have
two consecutive points on the same side of the line, which is Case 1.
Suppose they are not. Thus P11 and P2 are on the same side of the
line as P13. By the same logic, P10 and P3, P9 and P4, P8 and P5 and
P6 and P7 are on the same side of the line. However, then we have
two consecutive points on the same side of the line, so the segment
connecting those two points does not intersect the line.
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Since f(x)f(−y) = f(
√

x2 + y2) = f(x)f(y) we know that f(y) =

1



f(−y). Thus, since the rationals are dense in the reals so is 2
p
q in the

positive reals, we can get the formula for the function: f(x) = kx2
.

Plug the function back into the functional equation. f(
√

x2 + y2) =
kx2+y2

= kx2
ky2

= f(x)f(y). Thus the function works, and so it is the
solution to the functional equation.

4. We shall proceed using complex numbers. In this venue of attack,
we coordinize the plane with 0, the circumcenter of 4ABC, as the
origin, —AO— = 1, and represent each of the points A, B, C,D as a
complex numbers a, b, c, d. The real and complex parts of each number
represent the coordinates of its respective point. as a, b, c are on a
circle about the origin and A0 = 1, we have |a| = |b| = |c| = 1. Letting
g be a complex number representing the centroid of 4ABC, we have
(a+b+c)/3 = g. But, in any triangle, the circumcenter (O), orthocenter
(H), and centroid (G) are collinear and OH = 3OG, G between O and
H. Thus, as O is the origin, h = 3g = 3(a + b + c)/3 = a + b + c. We
are given that 6 DAB = 6 ABC = 6 BCD, and we wish to encode this
in our complex numbers. First note that is really a statment about the
vectors d−a, b−a, etc... Expressing the vectors in polar coordinates, we
notice the angle from d−a to b−a is really the difference in their polar
angles. Dividing the two d−a

b−a
yeilds a vector of the proper direction,

but still has a nonunit length, and thus cannot be used for comparison.
However, if we double are angle, thus essentially working modulo π
instead of 2π we only add possible solutions to the equations, we lose
none. Thus, dividing by the conjugate, and thus caputring only the
angle we find.
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=

a− b

c− b
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ā− b̄
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But, aā = 1 (and similarly for b, c), so ā − c̄ = 1
a
− 1

c
= c−a

ac
. So,

(d−a)c = ab(1−ad̄) and (d−c)a = cb(1−cd̄). Multplying through by c2

and a2 respectivly, and subtracting yeilds (d−a)c3−(d−c)a3 = c2ab(1−
ad̄)−a2cb(1−cd̄). Thus, d(c3−a3) = ac(c2−a2)+ac(bc−abcd̄−ab+abcd̄)
and then d(c− a)(c2 + a2 + ac) = (c− a)ac(c + a + b). Finally, we have
d = (a + b + c)( ac

a2+ac+c2
).

Now we have calculated are points O as 0, H as h = a + b + c and D
as d = (a + b + c)( ac

a2+ac+c2
) and we return to the original problem of
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proving O,H, and D are collinear. as O is the origion, this is equivlent
to proving that d is a real multiple of h; i.e. that d/h = ac

a2+ac+c2
is real.

But ( ac
a2+ac+c2

)( ā2+c̄2

ā2+c̄2
) = acā2c̄2

a2ā2c̄2+acā2c̄2+c2ā2c̄2
= āc̄

ā2+āc̄+c̄2
. Thus, ac

a2+ac+c2

equals its conjugate and is therefore real as desired.

5. The only position for the single −1 is the center of the 5× 5 grid.

Note: The only squares we can use to toggle the grid are 2× 2, 3× 3,
4 × 4, and 5 × 5. We shall say ”use a(b, c)” to denote toggling all
the −1/ + 1 values in the a × a square with lower left hand square at
coordinate (b, c) where the lower left hand coordinate of the 5×5 square
is (1, 1) and the uppper right (which can never be used of course) is
(5, 5).

I. A −1 in the center position can be removed. By using the squares
3(1, 1),3(3, 3),2(1, 4),2(4, 1),5(1, 1).

II. A single −1 anywhere else cannot be removed. Let us consider the
value S, the sum of the values in our grid modulo 4. Clearly, the grid
begins with S = −1 + 24 · 1 = 23 = 3 and the grid must end with S =
25·1 = 1. Let us now investigate how each of the square transformations
modifies the value of S for our grid. First notice that each time a value
is ”toggled” from −1 to +1 or +1 to −1, S ′ = S − (−1) + 1 = S + 2
or S ′ = S − 1 + (−1) = S − 2 = S + 2, and so the value of S is
always increased by exactly 2 (modulo 4). If we use a(b, c), we toggle
an entire a × a group of squares, or a · a squares. Then, if a is even,
so is a · a, and we have S ′ = S + 2 · a · a = S + 2 · 2k = S; that is,
S is fixed, by such a square toggle. However, if a is odd, so is a · a,
and we have S ′ = S + 2 · a · a = S + 2 · (2k + 1) = S + 2. Thus, S
changes only if we use and odd square, and then by exactly 2. Now,
suppose we find a some series of toggles that takes us from our intial
condtion of a single −1 to our final condition with no −1s. Let x be
the number of even squares used, and y be the number of odd squares.
Then, 1 = S ′ = S + 0x + 2y = S + 2y = 3 + 2y. Clearly, y must be
odd. However, notice that the only odd sqares we can use are 3 × 3
and 5×5, and both of these always toggle the center square, regardless
of position. But, as we use the odd squares in odd number of times,
the center square must be toggled an odd number of times. So, if the
center square began as +1 it is now a −1, and thus we must not be our
final configuration after using our sequence of squares, as we supposed.

3



Therefore, if the −1 is placed anywhere, but the center it cannot be
extricated by any sequence of these squares.
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