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Monthly Contest #8 — Solutions

1. Every point of the plane is colored either red or blue. Prove that there exists an equilateral triangle
all of whose vertices are the same color.

Solution: Suppose that no such triangle exists; we will obtain a contradiction. Let ABC be any
equilateral triangle of side 1; then, by assumption, two vertices of 4ABC are one color and the other
vertex is the second color. Without loss of generality, we may suppose A and B are red, and C is blue.
Construct equilateral 4ABD (D 6= C); then D must also be blue. Extend ray AB to point E such
that BE = 1, and note that 4CDE is equilateral, with CD = CE = DE =

√
3. Since C and D are

both blue, E must be red.

But if we draw equilateral 4BEF , with F and C on the same side of AB, then F must be blue (since
B,E are red). Now complete the equilateral triangle CFG (G 6= B). We see that C and F are blue,
so G is red. However, 4AEG is also equilateral with A and E red, so G should be blue. This is our
contradiction, so our assumption — that no monochrome equilateral triangles existed — must be false.

2. The UC Berkeley math department is about to move into a new, one-story building consisting of a
2001 × 2001 square grid of rooms. They would like to install doors between adjacent rooms so that
each room has exactly two doors. Prove that this cannot be done.

Solution: Suppose that it can be done. Color the building in checkerboard fashion, and suppose
that we obtain a white rooms and b black rooms. Each door connects a white room with a black room.
So, if we consider, for each white room, the number of doors adjoining it, we will count each door
exactly once. Since every room is to have 2 doors, the total number of doors will be 2a by this count.
But similarly, if we consider, for each black room, the number of adjoining doors, each door will be
counted once, so that the total number of doors is also equal to 2b. So, 2a = 2b, or a = b. It follows
that the total number of rooms is a+ b = 2a, an even number. But we also know the number of rooms
is 20012, an odd number — contradiction. Hence, the desired condition cannot be met.

3. The manager of Chez Gastropod wants to write a menu consisting of 15 dishes. A “meal” is defined to
be a subset of this menu (possibly empty), but some meals are legal and others are not. The manager
may choose which meals are legal, but there is a requirement that the intersection of any two legal
meals should still be legal. He wants there to be exactly 2001 legal meals. Can he do it?

Solution: The answer is yes. Take any arbitrary 15-element set (menu), and call a collection of
subsets (meals) “valid” if the intersection of any two sets in the collection is again in the collection.
Thus, the objective is to show that there exists a valid collection containing exactly 2001 sets. We
will show, by downward induction, that there exists a valid collection with exactly n sets for each
n, 0 ≤ n ≤ 215 = 32768.

The base case n = 215 is clear: the collection of all subsets of the menu is certainly valid. For the
induction step, suppose that there is a valid collection C of n subsets (1 ≤ n ≤ 32768); we will show
that there is a valid collection of n − 1 subsets. Choose a subset in C of maximum possible size, and
remove it; let C ′ denote the remaining collection, so that it consists of n − 1 subsets. We claim C ′

is still valid. Indeed, if S, T ∈ C ′, then the removed subset cannot be contained within either S or T
(because of maximality), hence it certainly cannot equal their intersection. But S ∩T was in C; hence,
it is also in C ′, as needed. Thus, the claim holds. Now, let n = 2001, and the problem is solved.

4. Given a line segment AB, construct a segment half as long as AB using only a compass. Construct a
segment one-third as long as AB using only a compass.

Solution: First, we provide (part of) an algorithm for circular inversion. Suppose we are given
point O and a circle centered at O of some radius r. If P is a point outside the circle, we wish to
construct point Q on ray OP , satisfying OP · OQ = r2. Let the circle centered at P , with radius
OP , intersect the given circle centered at O at points X and Y . Then let the circle with center X,
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radius r (which is constructible since r = OX), and the circle with center Y , radius r, intersect at O
and Q. We claim this point Q is what we want. Indeed, it is clear from symmetry that OP is the
perpendicular bisector of XY . Since XQ = r = Y Q, Q lies on this bisector as well — that is, on
line OP . Moreover, let H denote the intersection of XY with OP ; then PH < PX = PO ⇒ H lies
on ray OP , and, since Q is the reflection of O across XY , Q will lie on the opposite side of H from
O. This shows that Q lies on ray OP , not just on line OP . Finally, observe that PX = PO and
XO = XQ ⇒ ∠OXP = ∠POX = ∠QOX = ∠XQO, so, by equal angles, 4POX ∼ 4XQO. Thus,
OP/OX = QX/QO ⇒ OP ·OQ = OX ·QX = r2, as needed.

Now that this is done, we return to the original problem. By scaling, assume AB = 1. By drawing
circles centered at A and B of radius 1, and letting C be one of their intersection points, we obtain
an equilateral 4ABC. Similarly, we successively construct equilateral triangles BCD, BDE (with
D 6= A,E 6= C). We have ∠ABE = ∠ABC +∠CBD +∠DBE = 3(π/3) = π, so A,B,E are collinear,
and AE = AB + BE = 2. Then, since we have drawn the circle with center A and radius 1, we can
invert E across it according to the paragraph above, obtaining F such that AF = 1/2. In fact, F lies
on the given segment AB, so the segment AF is fully drawn.

Similarly, to construct a segment of length 1/3, let AB be given; extend AB to E as above so that
BE = 1, and then repeat the process, extending BE to G so that EG = 1. Then AG = 3, and
inverting G across our circle (center A, radius 1) will give what we need.

5. Let a1 = 3 and define an+1 = (3a2
n +1)/2−an for n ≥ 1. If n is a power of 3, prove that an is divisible

by n.

Solution: The main trick is finding a closed-form expression for an, which requires some experi-
mentation. We will show that an = (22n+1 + 1)/3 for all n by induction. It is easy to check that the
formula holds for n = 1. And if it holds for some n, then

an+1 =
3a2
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2
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,

giving the induction step.

Now, by Euler’s theorem, 3k divides 22·3k−1 − 1, for any nonnegative integer k, since φ(3k) (i.e. the
number of integers in {1, 2, . . . , 3k} relatively prime to 3k) equals 2 ·3k−1. But notice that 22·3k−1−1 =
(23k−1 − 1)(23k−1

+ 1), and 3k−1 is odd ⇒ 23k−1 ≡ 2 (mod 3) ⇒ 23k−1 − 1 is relatively prime to 3k, so,
in fact, 3k divides 23k−1

+ 1. Also, for any integers c, d with d odd, 2c + 1 | 2cd + 1. We conclude that
3k | 2a + 1 whenever 3k−1 | a and a is odd.

Applying this result twice in succession, we find that 3k | 23k

+ 1 and then that 3k+1 | 223k
+1 + 1, so

that 3k | (223k
+1 + 1)/3 = a3k for any integer k ≥ 0, and this is what we wanted to prove.
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