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(This is the �rst of two presentations on this topic)

1 Quick Outline

A recurrence relation gives the values of a sequence in terms of its previous values; a functional

equation gives values of a function in terms of other values of the function. (Note: a sequence

is a function, too! Recurrence relations are a special kind of functional equation.)

Usually, the goal is to �nd a closed form expression for the sequence or function; some-

times you want to �nd a speci�c value; occasionally, there's something else to do.

Working with recurrence relations often involves induction in some form, though it is

frequently possible to �nd closed form solutions without directly using induction.

Many situations can be recast in terms of a recurrence relation or functional equation.

This is especially true of combinatorial problems.

2 Easy illustrative examples

2.1 (AHSME 1999, #13) De�ne a sequence of real numbers a1; a2; a3; : : : by a1 = 1 and

a3n+1
= 99a3n for all n � 1. Then a100 equals? The original problem was multiple choice.

2.2 (AHSME 1999, #20) The sequence a1; a2; a3; : : : satis�es a1 = 19, a9 = 99, and for all

n � 3, an is the arithmetic mean of the �rst n� 1 terms. Find a2. The original problem was
multiple choice.

2.3 (AHSME 1998, #17) Let f(x) be a function with the two properties:

(a) for any two real numbers x and y, f(x+ y) = x+ f(y), and

(b) f(0) = 2.

What is the value of f(1998)? The original problem was multiple choice.

2.4 (AHSME 1997, #27) Consider those functions f that satisfy f(x+4)+f(x�4) = f(x)

for all real x. Any such function is periodic and there is a least common positive period p

for all of them. Find p. The original problem was multiple choice.

2.5 (Common idea) The probability a team wins its next game is .75 if it won its last game

and .25 if it lost its last game. What's the probability a team that wins game 1 will win

game 10?

2.6 (Common) Into how many pieces can a pizza be divided by n straight vertical cuts?

(Assume the pizza is essentially 2-dimensional { also convex. And no moving the pieces

around between the cuts.)

2.7 (Variations of the pizza problem)
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1. Into how many pieces can a cake be cut with n straight cuts (not necessarily vertical!

The point is that the cake has thickness, so now the shape is 3-dimensional and the

cuts are not lines, but planes!)

2. Go back to the essentially two-dimensional pizza { but now assume the cuts are not

straight lines, but V-shaped (that is, a cut is made with a \wedger" { starting from a

point, it generates two rays). How many

3. Go back to the two-dimensional pizza and n straight line cuts, but now count the

maximum number of pieces that don't have any of the crust on the boundary.

3 Basic examples, famous examples

� an+1 = an + k (So an = a1 + (k � 1)n)

� an+1 = an + n (So an = a1 + 1 + 2 + : : :+ (n� 1) = a1 + n(n� 1)=2)

� an+1 = an � k (an = a1k
n�1)

� an+1 = an � n (an = a1(n� 1)!)

� Fibonacci sequence: an+1 = an + an�1 (for n � 2), a1 = a2 = 1 (Closed form? various

ways to express it. Discussed at the board.)

� Fibonacci variants (Discussed on the board).

� Cauchy equation: f(x + y) = f(x) + f(y). (f(x) = f(1) � x, for rational x. If f is

de�ned on the reals, and is continuous, then f(x) = f(1) � x everywhere). There are

variants of this equation involving multiplication instead of addition. . .

� Josephus Problem: n rebels (let's say n = 41 for simplicity) are trapped by the Romans

and decide to kill themselves rather than be captured. They form a circle and go around

it, killing every other person until one is left, who must commit suicide. As the lone spy

in the group, you'd like to position yourself to be the one person left. What position

do you stand in? (Note: in the original story, the 41 rebels killed every third person

and Josephus found the right places for himself and an accomplice to stand in order to

be the last two people left).

4 Basic methods of solution

(This will be expanded in later sections)

� Guess the answer, prove it by induction

� try special values, like 0 or 1

� try to �t to most common patterns (listed above)
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� try geometric series solutions or polynomials (when appropriate)

� Finding simple solutions that generate all possible solutions. (\repertoire" method).

This is particularly appropriate when the sum of two distinct solutions is another

solution, or when solutions multiplied by a constant form another solution.

5 Fairly common types of problems

5.8 (AIME 1996) A bored student walks down a hall that contains a row of closed lockers,

numbered 1 to 1024. He opens the locker numbered 1, and then alternates between skipping

and opening each closed locker thereafter. When he reaches the end of the hall, the student

turns around and starts back. He opens the �rst closed locker he encounters, then alternates

between skipping and opening each closed locker thereafter. The student continues wandering

back and forth in this manner until every locker is open. What is the number of the last

locker he opens?

5.9 (AIME 1994) The function f has the property that, for each real number x,

f(x) + f(x� 1) = x2 :

If f(19) = 94, what is the remainder when f(94) is divided by 1000?

5.10 (AIME 1993) Let P0(x) = x3 + 313x2 � 77x � 8 : For integers n � 1, de�ne Pn(x) =

Pn�1(x� n). What is the coe�cient of x in P20(x)?

5.11 (AIME 1992) For any sequence of real numbers A = (a1; a2; a3; : : :), de�ne �A to be

the sequence (a2� a1; a3� a2; a4� a3; : : :), whose nth term is an+1� an. Suppose that all of

the terms of the sequence �(�A) are 1 and that a19 = a92 = 0. Find a1.

5.12 (British Math Olympiad, 1977, #1) A non-negative integer f(n) is assigned to each

positive integer n in such a way that the following conditions are satis�ed:

(a) f(mn) = f(m) + f(n), for all positive integers m, and n ;

(b) f(n) = 0 whenever the units digit of n (in base 10) is a `3'; and

(c) f(10) = 0.

Prove that f(n) = 0, for all positive integers n.

5.13 (Putnam, 1999, problem A-1) Find polynomials f(x), g(x), and h(x), if they exist,

such that, for all x:

jf(x)j � jg(x)j+ h(x) =

8>>>>><
>>>>>:

�1 if x < �1

3x+ 2 if �1 � x � 0

�2x+ 2 if x > 0

See Polya Contest 1995 Power Round on attached sheet.
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6 Summation and recurrence

A summation Sn =
Pn

k=1
ak can be thought of as a recurrence relation, since S1 = a1 and

Sn+1 = Sn + an+1. Consequently, the same ideas used to �nd closed forms for recurrences

may help �nd closed forms for sums (and vice versa).

Note some additional techniques useful for sums: perturbation method (splitting a term

o� the sum and rewriting it)

Some examples:

1.
Pn

k=1
(�1)kk2

2.
Pn

k=1
k � 2k

7 Some deeper ideas

Di�erence operator � (already mentioned in a problem above) is very useful when dealing

with sequences, especially those that come from polynomials.

Think about �(xn); but is is especially useful to look at falling powers, that is:

xm = x(x� 1) � � � (x�m+ 1)

(Rising powers are similarly de�ned, xm = x(x+ 1) � � � (x+m� 1), but we won't use them

here.) Also consider the polynomial
�
x
m

�
= xm

m!
.

What is �(xm)? What is �(
�
x
m

�
)? What is �k(xm)? �k(

�
x
m

�
)?

The polynomial
�
x
m

�
is 0 for x = 0; 1; : : : ;m� 1 and 1 for x = m, so it is easy to see how

its succession of �nite di�erences will look. This gives a way to resurrect any polynomial

from the di�erence sequence. (This is an example of the repertoire method).

This approach also gives a nice proof of the recurrence relation:

p(x+ n) =

 
n

1

!
p(x+ n� 1) �

 
n

2

!
p(x+ n � 2) + : : :+ (�1)n�1p(x)

for any polynomial of degree less than n.

(This result is given as Proposition 22, in section 4 of Gabriel Carroll's paper on polyno-

mials presented at an earlier session of the math circle.)

8 Various Problems

Some of these are quite di�cult! I can't guarantee that they are in order of di�culty; in

fact, I'm rather sure they aren't. Try a few; next week, I'll go over some of them, have hints

for the others, and cover some more advanced ideas.

8.14 (Manhattan (Kansas) Math Olympiad 1999) In the sequence 1; 1; 2; 3; 7; 22; 155; 3411; : : :

every term is equal to the product of the previous two terms plus 1. Prove that there are no

terms in the sequence which are divisible by 4.
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8.15 (Leningrad Math Olympiad 1988 Grade 10 Main Round) The functions f(x) and g(x)

are de�ned on the real axis so that they satisfy the following condition: for any real numbers

x and y, f(x+ g(y)) = 2x+ y + 5. Find an explicit expression for the function g(x+ f(y)).

8.16 (Leningrad Math Olympiad 1987 Grade 10 Elimination Round) The continuous func-

tions f; g: [0; 1]! [0; 1] satisfy the following condition f(g(x)) = g(f(x)) for every x 2 [0; 1].

It is known that f is an increasing function. Prove that there exists an a 2 [0; 1] such that

f(a) = g(a) = a.

8.17 (Leningrad Math Olympiad 1987 Grade 9 Elimination Round) Let (An) be a sequence

of natural numbers such that A1 < 1999 and Ai + Ai+1 = Ai+2 for any natural number i.

Prove that if A1 �An and A2 +An�1 are divisible by 1999, then n is odd.

8.18 (Leningrad Math Olympiad 1988 Grade 10 Elimination Round) The function F :R!

R is continuous and F (x) �F (F (x)) = 1 for all real x. It is known that F (1000) = 999. Find

F (500).

8.19 (Leningrad Math Olympiad 1990 Grade 11 Elimination Round) A continuous function

f :R! R satisifes equality f(x+ f(x)) = f(x) for all real x. Prove that f is constant.

8.20 (Leningrad Math Olympiad 1991 Grades 9-10 Elimination Round) Does there exist a

function F :N! N such that for any natural number x,

F (F (F (� � �F (x) � � �))) = x+ 1?

Here F is applied F (x) times.

8.21 (Leningrad Math Olympiad 1989 Grade 9 Elimination Round) A sequence of real

numbers a1; a2; a3; : : : has the property that ak+1 = (kak + 1)=(k � ak) for any natural

number k. Prove that this sequence contains in�nitely many postitive terms and in�nitely

many negative terms.

8.22 (Leningrad Math Olympiad 1989 Grade 10 Elimination Round) A sequence of real

numbers a1; a2; a3; : : : has the property that jam + an � am+nj � 1=(m + n) for all m and n.

Prove that this sequence is an arithmetic progression.

8.23 (Leningrad Math Olympiad 1991 Grade 11 Elimination Round) The �nite sequence

a1; a2; a3; : : : ; an is called p-balanced if any sum of the form ak + ak+p + ak+2p + � � � is the

same for any k = 1; 2; : : : ; p. Prove that if a sequence with 50 members is p � balanced for

p = 3; 5; 7; 11; 13; 17, then all its members are equal to 0.

8.24 (Int. Math Olympiad 1977) Let f(n) be a function de�ned on the set of all positive

integers and having all its values in the same set. Prove that if f(n+ 1) > f(f(n)) for each

positive integer n, then f(n) = n for each n.

8.25 (Int. Math Olympiad 1976). A sequence fung is de�ned by u0 = 2, u1 = 5=2,

un+1 = un(u
2

n�1 � 2) � u1 for n = 1; 2; : : :. Prove that for positive integers n,

[un] = 2[2
n�(�1)n]=3

where [x] denotes the greatest integer less than or equal to x.
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8.26 (Bratislava Correspondence Seminar, Fall 1999 3rd series): Find all functions f :R!

R that satisfy: xf(x) + f(1 � x) = x3 � x for all real x.

8.27 (Bratislava Correspondence Seminar, Fall 1999 3rd series): Let f1; f2; f3; : : : be the

elements of the Fibonacci sequence (that is, f1 = f2 = 1 and fn+2 = fn+1+ fn for all positive

integers n). Prove that if P (x) is a a polynomial of degree 998 for which P (k) = fk for

k = 1000; 1001; : : : ; 1998, then P (1999) = f1999� 1.

8.28 (Bratislava Correspondence Seminar, Fall 1998 3rd series): For a function f :Z! R,

the following statement is true:

f(z) =

8><
>:

z � 10 for z > 100

f(f(z + 11)) for z � 11

Prove that for all z � 100, f(z) = 91.

8.29 (Bratislava Correspondence Seminar, Fall 1998 3rd series | but I'm sure this problem

is not original): f :R ! R is continuous and f(f(f(x))) = x for all real x. Prove that

f(x) = x for all real x.

8.30 (British Math Olympiad 1999). Any positive integer m can be written uniquely in

base 3 as a string of 0s, 1s, and 2s (not beginning with a zero). For example:

98 = (1 � 81) + (0 � 27) + (1 � 9) + (2 � 3) + (2 � 1) = (10122)3 :

Let c(m) denote the sum of the cubes of the digits of the base 3 form of m; thus, for instance

c(98) = 13+03+13+23+23 = 18. For any �xed positive integer n, de�ne the sequence (ur)

by:

u1 = n and ur = c(ur�1) for r � 2

Show there is a positive integer r for which ur is in the set f1; 2; 17g.

8.31 (British Math Olympiad 1999) Consider all functions f from the positive integers to

the positive integers such that:

(i) for each positive integer m there is a unique positive integer n such that f(n) = m.

(ii) for each positive integer n, we have either f(n + 1) is either 4f(n) � 1 or f(n) � 1.

Find the set of positive integers p such that f(1999) = p for some function f with properties

(i) and (ii).

8.32 (Putnam, 1999, problem A-6) The sequence (an)n�1 is de�ned by a1 = 1, a2 = 2,

a3 = 24, and for n � 4,

an =
6a2n�1an�3 � 8an�1a

2

n�2

an�2an�3
:

Show that, for all n, an is an integer multiple of n.

8.33 (Putnam 1990) Let T0 = 2, T1 = 3, T2 = 6 and for n � 3,

Tn = (n+ 4)Tn�1 � 4nTn�2 + (4n � 8)Tn�3 :
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The �rst few terms are 2, 3, 6, 14, 40, 152, 784, 5158, 40576, 363392. Find, with proof, a

formula for Tn of the form Tn = An +Bn where fAng and fBng are well-known sequences.

8.34 (Putnam 1980) For which real numbers a does the sequence de�ned by the initial

condition u0 = a and the recursion un+1 = 2un � n2 have un > 0 for all n � 0?

8.35 (USAMO 1993) Consider functions f : [0; 1]! R which satisfy:

1. f(x) � 0 for all x in [0; 1],

2. f(1) = 1,

3. f(x) + f(y) � f(x+ y) whenever x, y, and x+ y are all in [0; 1].

Find, with proof, the smallest constant c such that f(x) � cx for every function f satisfying

the three conditions and every x in [0; 1].

8.36 (USAMO 1993) Let a, b be odd positive integers. De�ne the sequence fn by putting

f1 = a, f2 = b, and by letting fn for n � 3 be the greatest odd divisor of fn�1 + fn�2. Show

that fn is constant for n su�ciently large and determine the eventual value as a function of

a and b.

8.37 (India, 1998) Let N be a positive integer such that N + 1 is prime. Choose ai from

f0; 1g for i = 0; : : : ; N . Suppose that the ai are not all equal, and let f(x) be a polynomial

such that f(i) = ai for i = 0; : : : ; N . Prove that the degree of f(x) is at least N .
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