
Berkeley Math Circle

Take-Home Contest #2 – Solutions

1. A 6×6 square is covered by nonoverlapping dominos (2×1 rectangles, placed horizontally or vertically).
Prove that there must be a horizontal line or a vertical line that passes through the interior of the big
square, but which does not cut the interior of any domino.

Solution: Consider all the grid lines of the big square. If some such line is intersected by d dominos,
we claim d is even. Proof: Looking at the portion of the board on one side of the line, we find that
the number of squares there is divisible by 6 and so is even; on the other hand, each of the d dominos
covers exactly 1 square there and any other domino covers either 0 or 2, so the number of squares has
the same parity as d; hence, d is even.

Now if each of the 5 horizontal and 5 vertical lines were intersected by some domino, the claim
implies that each would intersect at least 2 dominos. Thus we would have 20 intersections, and since a
domino cannot cross more than one line, this gives 20 distinct dominos. This is a contradiction since
we only use 18 dominos to cover the square.

2. The set of positive integers is parititioned into finitely many subsets. Show that some subset S has the
following property: for every positive integer n, S contains infinitely many multiples of n.

Solution: Let the subsets be S1, S2, . . . , Sk. Suppose the statement is false and seek a contradiction.
Then for each Si there exists some ni such that Si contains only finitely many multiples of ni. Let
n = n1n2 · · ·nk; then every multiple of n is a multiple of each ni and so each Si can contain only finitely
many multiples of n. But this means that the k sets together contain only finitely many multiples of n,
and since they partition the positive integers (which contain infinitely many multiples of n), we have
our contradiction.

3. The Cannibal Club of California (CCC) had 30 members yesterday morning – but that was before
their festive annual dinner! After the dinner, it turned out that among any six members of the club,
there was a pair one of whom ate the other. Prove that at least six members of the CCC are now
nested inside one another.

Solution: We must assume that nobody was eaten by more than one person for the problem
statement to make sense. To each cannibal we assign a numerical “depth” as follows: the depth of
cannibal C is the largest integer n such that there exist cannibals C1, C2, . . . , Cn = C such that Ci ate
Ci+1 for i = 1, 2, . . . , n− 1. (A cannibal who was eaten by noone has depth 1. Also note that depth is
definable: there is an upper bound on the value of n, since any chain of length greater than 30 would
contain some cannibal twice, an impossibility; hence there is a maximum value of n for which chains
exist.) Note that no cannibal ate another of the same depth, since the inner cannibal always has higher
depth. Now, if we can find a cannibal of depth ≥ 6 we are done, so assume that the only depths which
occur are 1, 2, 3, 4, 5. By the pigeonhole principle, some depth was assumed by at least 6 cannibals;
from the given, one of these six ate another. But we know this is impossible, so our assumption was
wrong and some higher depth does occur.

Remark: Several students were puzzled about the wording of this problem. We see that, in
actuality, not much information is needed (e.g. whether “eating” is defined transitively) to find a
general solution.

4. Let E be an ellipse that is not a circle. For which n ≥ 3 is it possible to inscribe a regular n-gon in E?
(For each n, either show how to construct such an n-gon or prove that none exists.)

Solution: We claim n = 3, 4 are the only solutions. To see that 3 is possible, let P be the endpoint
of one of the axes, and draw two lines at angles of π/6 to that axis through P . By symmetry, these
lines intersect the ellipse at points Q,R equidistant from P , so PQR is an equilateral triangle. To see
that 4 is possible, draw the four lines through the center of E at angles of π/4 to its axes; by symmetry,
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they intersect the ellipse at points which are equidistant from (and subtend equal angles at) its center
and therefore form a square.

Now, the vertices of any regular polygon lie on a common circle. By Bezout’s theorem, this circle
can only intersect E in 22 points (since both are curves of degree 2), so only 4 vertices of our polygon
can lie on the ellipse, and we cannot have n > 4. (Alternatively, one can see this using the fact that 5
distinct points determine a unique conic section - that conic cannot be both E and a circle.)

5. Prove that
tan

(3π

11

)
+ 4 sin

(2π

11

)
=
√

11.

Solution: We work with complex roots of unity. Let ζ = cos π/11 + i sinπ/11; then we know that
ζn = cos nπ/11+ i sinnπ/11 and, in particular, ζ11 = −1. Now, the given expression is clearly positive
(since each term is positive), so we need only check that its square is 11. To do that, observe that
sin 2π/11 = (ζ2 + ζ9)/2i, sin 3π/11 = (ζ3 + ζ8)/2i, and cos 3π/11 = (ζ3 − ζ8)/2; hence our objective is
to show that (

2
ζ2 + ζ9

i
+

ζ3 + ζ8

(ζ3 − ζ8)i

)2

= 11

or, equivalently, that [2(ζ2 + ζ9)(ζ3− ζ8)+ (ζ3 + ζ8)]2 = −11(ζ3− ζ8)2. The expression inside brackets
on the left multiplies out to 2ζ5 + 2ζ12 − 2ζ10 − 2ζ17 + ζ3 + ζ8 = −2ζ10 + ζ8 + 2ζ6 + 2ζ5 + ζ3 − 2ζ;
when we square this and collect terms (remembering again that ζ11 = −1), we obtain

4ζ10 − 4ζ9 + 4ζ8 − 4ζ7 − 7ζ6 + 7ζ5 + 4ζ4 − 4ζ3 + 4ζ2 − 4ζ − 18

= 4(ζ10 − ζ9 + ζ8 − · · ·+ 1) + 11(ζ5 − 2− ζ6).

Since the first expression in parentheses is (ζ11 +1)/(ζ +1) = 0 and the second is −(ζ3− ζ8)2, we have
what we wanted.

Remark: As one student observed, a similar proof shows that tan(3kπ/11)+4 sin(2kπ/11) = ±
√

11
for any integer k not divisible by 11. A related result of Gauss states that, for any odd prime p, if
ζ = cos 2π/p + i sin 2π/p, then

p−1∑
j=1

( j

p

)
ζj =

{ √
p if p = 4k + 1

i
√

p if p = 4k + 3,

where we define (j/p) = 1 if there exists an integer n with n2 − j divisible by p and −1 otherwise.

Solutions c© 1999, Berkeley Math Circle.
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