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1. Multiplicative Functions

Definition 1. A function f : N→ C is said to be arithmetic.

In this section we discuss the set M of multiplicative functions, which is a subset of the
set A of arithmetic functions. Why this subset is so special can be explained by the fact
that it is usually easier to calculate explicit formulas for multiplicative functions, and not
so easy to do this for arbitrary arithmetic functions. 1

Definition 2. An arithmetic function f(n) : N → C is multiplicative if for any relatively
prime n,m ∈ N:

f(mn) = f(m)f(n).

Examples. Let n ∈ N. Define functions τ, σ, π : N→ N as follows:
• τ(n) = the number of all natural divisors of n = #{d > 0 | d|n};
• σ(n) = the sum of all natural divisors of n =

∑
d|nd;

• π(n) = the product of all natural divisors of n =
∏
d|nd.

As we shall see below, τ and σ are multiplicative functions, while π is not. From now on
we shall write the prime decomposition of n ∈ N as n = pα1

1 pα2
2 · · · pαr

r for distinct primes
pi and αi > 1. It is easy to verify the following properties of multiplicative functions:

1But on a deeper level, M is special partly because it is closed under the Dirichlet product in A. For this
one has to wait until after Section 2.



Lemma 1. If f is multiplicative, then either f(1) = 1 or f ≡ 0. Further, if f1, f2, ..., fk
are multiplicative, then the usual product f1f2 · · · fn is also multiplicative.

Using the prime decomposition of n ∈ N, derive the following representations of τ, σ and π.

Lemma 2. The functions τ(n), σ(n) and π(n) are given by the formulas:

τ(n) =
r∏
i=1

(αi + 1), σ(n) =
r∏
i=1

pαi+1
i − 1
pi − 1

, π(n) = n
1
2
τ(n).

Conclude that τ and σ are multiplicative, while π is not.

Examples. The following are further examples of well-known multiplicative functions.
• µ(n), the Möbius function;
• e(n) = δ1,n, the Dirichlet identity in A;
• I(n) = 1 for all n ∈ N;
• id(n) = n for all n ∈ N.

Taking the sum-functions of these, we obtain the relations: Sµ = e, Se = I, SI = τ ,
and Sid = σ. These examples suggest that the sum-function is multiplicative, provided the
original function is too. In fact,

Theorem 1. f(n) is multiplicative iff its sum-function Sf (n) is multiplicative.

Proof: Let f(n) be multiplicative, and let x, y ∈ N such that (x, y) = 1. Further, let
x1, x2, ..., xk and y1, y2, ..., ym be all divisors of x and y, respectively. Then (xi, yj) = 1, and
{xiyj}i,j are all divisors of xy.

⇒ Sf (x) · Sf (y) =
k∑
i=1

f(xi)
m∑
j=1

f(yj) =
∑
i,j

f(xi)f(yj) =
∑
i,j

f(xiyj) = Sf (xy).

Hence Sf (n) is multiplicative.
Conversely, if Sf (n) is multiplicative, then let n1, n2 ∈ N such that (n1, n2) = 1 and

n = n1n2. We will prove by induction on n that f(n1n2) = f(n1)f(n2). The statement is
trivial for n = 1: f(1) = Sf (1)(= 1 or 0.) Assume that it is true for all m1m2 < n. Then
for our n1, n2 we have:

Sf (n1n2) =
∑
di|ni

f(d1d2) =
∑
di|ni

d1d2<n

f(d1d2) + f(n1n2) =
∑
di|ni

d1d2<n

f(d1)f(d2) + f(n1n2).

On the other hand,

Sf (n1)Sf (n2) =
∑
d1|n1

f(d1)
∑
d2|n2

f(d2) =
∑
di|ni

d1d2<n

f(d1)f(d2) + f(n1)f(n2).

Since Sf (n1n2) = Sf (n1)Sf (n2), equating the above two expressions and canceling appro-
priately, we obtain f(n1n2) = f(n1)f(n2). This completes the induction step, and shows
that f(n) is indeed multiplicative.
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Corollary 1. The sum-function Sf (n) of a multiplicative function f(n) is given by the
formula:

Sf (n) =
r∏
i=1

(
1 + f(pi) + f(p2

i ) + · · ·+ f(pαi
i )
)
.

2. Dirichlet Product and Möbius Inversion

Consider the set A of all arithmetic functions, and define the Dirichlet product of f, g ∈ A

as:

f ◦ g(n) =
∑

d1d2=n

f(d1)f(d2).

Note that f ◦ g is also arithmetic, and that the product ◦ is commutative, and associative:

(f ◦ g) ◦ h(n) = f ◦ (g ◦ h)(n) = f ◦ g ◦ h(n) =
∑

d1d2d3=n

f(d1)f(d2)f(d3).

With respect to the Dirichlet product, the identity element e ∈ A is easy to find:

e(n) =
{

1 if n = 1
0 if n > 1.

Indeed, check that e ◦ f = f ◦ e = f for any f ∈ A. If we were working with the usual
product of functions f · g(n) = f(n)g(n), then the “identity” element would have been

I(n) = 1 for all n ∈ N,

because I · f = f for all functions f . In the set A, however, I is certainly not the identity
element, but has the nice property of transforming each function f into its so-called sum-
function Sf . Define

Sf (n) =
∑
d|n

f(d),

to be the sum-function of f ∈ A, and note that Sf is also arithmetic. Check that:

I ◦ f = f ◦ I = Sf for all f ∈ A.

It is interesting to find the Dirichlet inverse g ∈ A of this simple function I in our set A,
i.e. such that g ◦ I = I ◦ g = e. This naturally leads to the introduction of the so-called
Möbius function µ:

Definition 2. The Möbius function µ : N→ C is defined by

µ(n) =

 1 if n = 1
0 if n is not square-free

(−1)r if n = p1p2 · · · pr, pj − distinct primes.

Lemma 3. The Dirichlet inverse of I is the Möbius function µ ∈ A.

Proof: The lemma means that µ ◦ I = e, i.e.∑
d|n

µ(d) =
{

1 if n = 1
0 if n > 1.(1)
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This follows easily from the definition of µ. Indeed, for n = pα1
1 pα2

2 · · · pαr
r > 1 we have∑

d|n

µ(d) =
∑

d|n,d−sq.free

µ(d) = µ(1) +
r∑

k=1

∑
1≤i1<···<ik≤r

µ(pi1 · · · pik).

Here the last sum runs over all square-free divisors of n. For combinatorial reasons,∑
d|n

µ(d) =
r∑

k=0

(
r

k

)
(−1)k = (1− 1)r = 0.

To summarize, we have shown that the Dirichlet inverse of the function I(n) is the Möbius
function µ(n): µ ◦ I = I ◦ µ = e. Unfortunately, not all arithmetic functions have Dirichlet
inverses in A. In fact, show that

Lemma 4. An arithmetic function f has a Dirichlet inverse in M iff f(1) 6= 0.2

The “right” notion to replace “inverses in A” turns out to be “sum-functions”, which is
the idea of the Möbius inversion theorem.

Theorem 2 (Möbius inversion theorem). Any arithmetic function f(n) can be expressed
in terms of its sum-function Sf (n) =

∑
d|n f(d) as

f(n) =
∑
d|n

µ(d)Sf (
n

d
).

Proof: The statement is nothing else but the Dirichlet product f = µ ◦ Sf in A:

µ ◦ Sf = µ ◦ (I ◦ f) = (µ ◦ I) ◦ f = e ◦ f = f.

Note: Here is a more traditional proof of the Möbius Inversion Formula:∑
d|n

µ(d)Sf (
n

d
) =

∑
d|n

µ(
n

d
)Sf (d) =

∑
d|n

µ(
n

d
)
∑
d1|d

f(d1)

=
∑
d1|n

f(d1)
∑
d1|d|n

µ(
n

d
) =

∑
d1|n

f(d1)
∑
d2|m

µ(
m

d2
),

where m = n/d1, d2 = d/d1. By property (1), the second sum is non-zero only when m = 1,
i.e. d1 = n, and hence the whole expression equals f(n).

This proof, however, hides the product structure of A under the Dirichlet product. It is
natural to asks the opposite question: given the Möbius relation f(n) =

∑
d|n µ(d)g(nd ) for

two arithmetic functions f and g, can we deduce that g is the sum-function Sf of f? The
answer should be obvious from the product structure of A:

f = µ ◦ g ⇒ I ◦ f = I ◦ (µ ◦ g) ⇒ Sf = (I ◦ µ)g = e ◦ g = g,

and indeed, g is the sum-function of f . If you prefer more traditional proofs, you can
recover one from the above by recalling that “multiplying f by I” is the same as taking the
sum-function of f .

2For those who care about group theory interpretations, this implies that M is not a group with the
Dirichlet product, but the subset M′ of it consisting of all arithmetic functions f with f(1) 6= 0 is a group.
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Corollary 2. For two arithmetic functions f and g we have the following equivalence:

g(n) =
∑
d|n

f(d) ⇔ f(n) =
∑
d|n

µ(d)g(
n

d
).

This incidentally shows that every arithmetic function g is the sum-function of another
arithmetic function f : simply define f by the second formula as f = µ ◦ g.

Notice that Theorem 1 does not use the Dirichlet product at all, but instead it hides
a more general fact. For an arithmetic function f , its sum-function is Sf = I ◦ f , and
by Möbius inversion, f = µ ◦ Sf . Thus, Theorem 1 simply proves that if f ∈ M, then
the product of the two multiplicative functions I and f is also multiplicative, and that if
Sf ∈M, then the product of the two multiplicative functions Sf and µ is also multiplicative.
This naturally suggest the more general

Theorem 3. The set M of multiplicative functions is closed under the Dirichlet product:
f, g ∈M⇒ f ◦ g ∈M.

Proof: Let f, g ∈M, (a, b) = 1, and h = f ◦ g. Then

h(a)h(b) =
[
f ◦ g(a)

]
·
[
f ◦ g(b)

]
=
∑
d1|a

f(d1)g(
a

d1
)
∑
d2|b

f(d2)g(
b

d2
)

=
∑

d1|a,d2|b

f(d1)f(d2)g(
a

d1
)g(

b

d2
) =

∑
d1|a,d2|b

f(d1d2)g(
ab

d1d2
)

=
∑
d|ab

f(d)g(
ab

d
) = f ◦ g(ab) = h(ab).

Thus, h is also multiplicative, so that f ◦ g ∈M.

For the group theory fans: find the explicit Dirichlet inverse of any multiplicative function
f 6≡ 0, and conclude

Lemma 5. The set M− {f ≡ 0} is a group under the Dirichlet product.

3. Warm-up Problems

Problem 1. Find m,n ∈ N such that they have no prime divisors other than 2 and 3,
(m,n) = 18, τ(m) = 21, and τ(n) = 10.

Problem 2. Find n ∈ N such that one of the following is satisfied: π(n) = 23 · 36, π(n) =
330 · 540, π(n) = 13 · 31, or τ(n) = 13 · 31.

Problem 3. Define σk(n) =
∑
d|n

dk. Thus, σ0(n) = τ(n) and σ1(n) = σ(n). Prove that

σk(n) is multiplicative for all k ∈ N, and find a formula for it.

Problem 4. Show that τ(n) is odd iff n is a perfect square, and that σ(n) is odd iff n is a
perfect square or twice a perfect square.

Problem 5. If f(n) is multiplicative, f 6≡ 0, then show
∑
d|n

µ(d)f(d) =
r∏
i=1

(
1− f(pi)

)
.
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Problem 6. If f(n) is multiplicative, then show that h(n) =
∑

d|n µ(nd )f(d) is also mul-
tiplicative. Conclude that every multiplicative function is the sum-function of another
multiplicative function.

4. The Euler Function ϕ(n)

Definition 4. The Euler function ϕ(n) assigns to each natural number n the number of
the integers d between 1 and n which are relatively prime to n (set ϕ(1) = 1.)

Lemma 6. ϕ(n) is multiplicative.

Proof: Consider the table of all integers between 1 and ab, where a, b ∈ N, (a, b) = 1.

1 2 · · · i · · · a− 1 a
a+ 1 a+ 2 · · · a+ i · · · 2a− 1 2a

2a+ 1 2a+ 2 · · · 2a+ i · · · 3a− 1 3a
· · · · · · · · · · · · · · · · · · · · ·

ja+ 1 ja+ 2 · · · ja+ i · · · (j + 1)a− 1 (j + 1)a
· · · · · · · · · · · · · · · · · · · · ·

(b− 2)a+ 1 (b− 2)a+ 2 · · · (b− 2)a+ i · · · (b− 1)a− 1 (b− 1)a
(b− 1)a+ 1 (b− 1)a+ 2 · · · (b− 1)a+ i · · · ba− 1 ba

Note that if ja + i is relatively prime with a, then all numbers in its (i-th) column will
be relatively prime with a. In the first row there are exactly ϕ(a) numbers relatively prime
with a, so their ϕ(a) columns will be all numbers in the table which are relatively prime
with a.

As for b, each column is a system of remainders modulo b because (a, b) = 1 (check
that in each column the b integers are distinct modulo b.) Thus, in each column we have
precisely ϕ(b) relatively prime integers to b. Hence, the total number of elements in this
table relatively prime to ab is exactly ϕ(ab) = ϕ(a)ϕ(b), and ϕ(n) is multiplicative.

We can use multiplicativity of the Euler function to derive a formula for ϕ(n). For a
prime p, all numbers d ∈ [1, pk] such that (d, pk) 6= 1 are exactly those d divisible by p:
d = p · c with c = 1, 2, ..., pk−1, i.e. pk−1 in number. Hence ϕ(pk) = pk − pk−1. Therefore,

ϕ(n) =
r∏
i=1

ϕ(pαi
i ) =

r∏
i=1

(pαi
i − p

αi−1
i ) =

r∏
i=1

pαi
i (1− 1

pi
) = n(1− 1

p1
) · · · (1− 1

pr
).

Lemma 7. The sum-function Sϕ(n) of the Euler function ϕ(n) satisfies:∑
d|n

ϕ(n) = n.

Proof: The multiplicativity of the Euler function ϕ(n) implies that Sϕ(n) is multiplicative,
so that Sϕ(n) = Sϕ(pα1

1 ) · · ·Sϕ(pαr
r ). This reduces the problem to a prime power n = pa,

which together with ϕ(pj) = pj − pj−1 easily implies Sϕ(pa) = pa.

Remark: We can prove the lemma also directly by considering the set of fractions{
1
n
,

2
n
, ...,

n− 1
n

,
n

n

}
=
{
a1

b1
,
a2

b2
, ...,

an−1

bn−1
,
an
bn

}
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where (ai, bi) = 1. The set D of all denominators {bi} is precisely the set of all divisors of
n. Given a divisor d of n, d appears in the set D exactly ϕ(d) times:

ai
bi

=
ai
d

=
ai
n

d
n
,

where (ai, d) = 1 and 1 ≤ ai ≤ d. Counting the elements in D in two different ways implies
n =

∑
d|n ϕ(d).

We can use this Remark to show again multiplicativity of the Euler function: indeed,
this follows from the fact that its sum-function Sϕ(n) = n is itself obviously multiplicative.

5. Warm-up Problems

Problem 7. Show that ϕ(nk) = nk−1ϕ(n) for all n, k ∈ N.

Problem 8. Solve the following equations:
• ϕ(2x5y) = 80.
• ϕ(n) = 12.
• ϕ(n) = 2n/3.
• ϕ(n) = n/2.
• ϕ(ϕ(n)) = 21333.

Problem 9. Show that

• ϕ(n)ϕ(m) = ϕ((n,m))ϕ([n,m]);

• ϕ(nm)ϕ((n,m)) = (n,m)ϕ(n)ϕ(m).

6. Applications to Problems

Problem 10. For two sequences of complex numbers {a0, a1, ..., an, ...} and {b0, b1, ..., bn, ...}
show that the following relations are equivalent:

an =
n∑
k=0

bk for all n ⇔ bn =
n∑
k=0

(−1)k+nak for all n.

Problem 11. Solve the equation ϕ(σ(2n)) = 2n.

Problem 12. Let f(x) ∈ Z[x] and let ψ(n) be the number of values f(j), j = 1, 2, ..., n,
such that (f(j), n) = 1. Show that ψ(n) is multiplicative and that ψ(pt) = pt−1ψ(p).
Conclude that

ψ(n) =
∏
p|n

ψ(p)/p.
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Problem 13. Find closed expressions for the following sums:

•
∑
d|n

µ(d)τ(d) •
∑
d|n

µ(d)ϕ(d)

•
∑
d|n

µ(d)σ(d) •
∑
d|n

µ2(d)ϕ2(d)

•
∑
d|n

µ(d)τ(
n

d
) •

∑
d|n

µ(d)
ϕ(d)

•
∑
d|n

µ(d)σ(
n

d
) •

∑
d|n

µ(
n

d
)ln d

•
∑
d|n

µ(d)
d

•
∑

(t,n)=1

1≤t<n

t

Problem 14. Consider the function ζ(s) =
∞∑
n=1

1
ns

, the so-called Riemann zeta-function.

It converges for s > 1. In fact, one can extend it to an analytic function over the whole
complex plane except s = 1. The famous Riemann Conjecture claims that all zeros of ζ(s)
in the strip 0 ≤ Re s ≤ 1 lie on the line Re s = 1/2. For ζ(s) show the following formal
identities:

• ζ(s) =
∏
p

1
1− p−s

• ζ(s)2 =
∞∑
n=1

τ(n)
ns

• ζ(s)−1 =
∞∑
n=1

µ(n)
ns

• ζ(s)ζ(s− 1) =
∞∑
n=1

σ(n)
ns

Problem 15. [Please, do not discuss this problem - it is on Monthly Contest
8.] Suppose that we are given infinitely many tickets, each with one natural number on it.
For any n ∈ N, the number of tickets on which divisors of n are written is exactly n. For
example, the divisors of 6, {1, 2, 3, 6}, are written in some variation on 6 tickets, and no
other ticket has these numbers written on it. Prove that any number n ∈ N is written on
at least one ticket.

Problem 16. Let f(n) : N→ N be multiplicative and strictly increasing. If f(2) = 2, then
f(n) = n for all n.

7. Problems with [x] and Multiplicative Functions

Problem 17. Prove that
n∑
k=1

τ(k) =
n∑
k=1

[n
k

]
and

n∑
k=1

σ(k) =
n∑
k=1

k
[n
k

]
.
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Problem 18. Prove that for (p, q) = 1:
q−1∑
k=1

[
kp

q

]
=

p−1∑
k=1

[
kq

p

]
.

Problem 19. Prove that for ∀n ∈ N:
∑

1≤k<n

⌊
ϕ(k + 1)

k

⌋
= n− 1−

n∑
k=1

⌈{
(k − 1)! + 1

k

}⌉
.

Problem 20. Let S(m,n) =
{
k ∈ Z

∣∣m (mod k) + n (mod k) ≥ k
}

. Find
∑

k∈S(m,n)

ϕ(k).

8. Hints and Solutions to Selected Problems

Hint 10. Define a function a : N→ C by

a(n) =

 a0 if n = 1
ar if n = p1p2 · · · pr
0 if n− not sq.free.

Solution 11. We have ϕ(2n+1 − 1) = 2n. If 2n+1 − 1 = 1, then n = 0 and ϕ(1) = 1.

Otherwise, 2n+1 − 1 = pα1
1 pα2

2 · · · pαr
r > 1 with all pi’s odd. From a previous formula,

ϕ(pα1
1 pα2

2 · · · p
αr
r ) = 2n = pα1−1

1 pα2−1
2 · · · pαr−1

r (p1 − 1)(p2 − 1) · · · (pr − 1).

Therefore, all αi = 1, 2n = (p1 − 1)(p2 − 1) · · · (pr − 1), and all pi = 2si + 1 for some
si ≥ 1. It is easy to see that if si has an odd divisor > 1, then 2si + 1 will factor, making
pi non-prime. Hence pi = 22qi + 1 for some qi ≥ 0.

We have reduced the problem to finding all sets of primes pi of the above type such that

p1p2 · · · pr + 1 = 2n+1 = 2(p1 − 1)(p2 − 1) · · · (pr − 1).

Order the primes p1 < p2 < · · · < pr. Check consecutively via modulo appropriate powers
of 2, that, if they exist, the smallest primes must be: p1 = 3, p2 = 5, p3 = 17, p4 = 257.
However, if p5 also exists, then p5 = 224

+ 1, which is not prime. Hence, r ≤ 4, and
n = 1, 2, 3, 4.

Hint 12. Modify the “table” proof for multiplicativity of the Euler function ϕ(n).

Hint 13, “lnd”. Note that lnd is not multiplicative. Consider the function ∧(n) defined
by: ∧(n) = ln p if n is a power of a prime p, and ∧(n) = 0 otherwise, and use Möbius
inversion.

Solution 16. We have f(1) = 1 and f(2) = 2. Let f(3) = 3 +m for m ∈ N ∪ {0}.
⇒ f(6) = f(2) · f(3) = 6 + 2m ⇒ f(5) ≤ 5 + 2m ⇒ f(10) ≤ 10 + 4m

⇒ f(9) ≤ 9 + 4m ⇒ f(18) ≤ 18 + 8m ⇒ f(15) ≤ 15 + 8m.

But f(15) = f(3) · f(5) ≥ (3 + m) · (5 + m) = 15 + 8m + m2. Hence, m2 ≤ 0, i.e. m = 0
and f(3) = 3.

Now assume by induction on k that f(s) = s for s = 1, 2, ..., 2k − 1, where k ≥ 2.
Then f(4k − 2) = 2f(2k − 1) = 4k − 2. Since f(2k − 1) = 2k − 1 and the function is
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strictly increasing, f(s) = s for all s ∈ [2k − 1, 4k − 2]. In particular, f(2k) = 2k and
f(2k + 1) = 2k + 1 (4k − 2 > 2k + 1). This completes the induction step.

Solution 17a. Set Bn,k =
[n
k

]
−
[
n− 1
k

]
for k = 1, 2, ..., n. Then Bn,k =

{
1 when k |n,
0 when k6 |n,

and τ(n) =
n∑
k=1

Bn,k. Summing up, we obtain

n∑
k=1

τ(k) =
n∑
k=1

k∑
m=1

Bm,k =
n∑
k=1

k∑
m=1

([
k

m

]
−
[
k − 1
m

])
=

=
n∑

k,m=1

[
k

m

]
−

∑
1≤m≤n

1≤k≤n−1

[
k

m

]
=

∑
1≤m≤n
k=n

[
k

m

]
.

Solution 17b. From the previous problem, kBn,k =
{
k when k |n,
0 when k6 |n, and σ(n) =

n∑
k=1

kBn,k.

⇒
n∑
k=1

σ(k) =
n∑
k=1

k∑
m=1

mBm,k =
n∑
k=1

k∑
m=1

(
m

[
k

m

]
−m

[
k − 1
m

])
=

=
n∑

k,m=1

m

[
k

m

]
−

∑
1≤m≤n

1≤k≤n−1

m

[
k

m

]
=

∑
1≤m≤n
k=n

m

[
k

m

]
.

Hint 18. Use the identity
[
kp

q

]
−
[

(q − k)p
q

]
= p− 1 for k = 1, 2, ..., q− 1, and show that

both sums equal
(p− 1)(q − 1)

2
.

Hint 19. Both sides count the number of primes p ≤ n.

Hint 20. The given sum equals∑
k

([
m+ n

k

]
−
[m
k

]
−
[n
k

])
ϕ(k) = Σ(m+ n)− Σ(m)− Σ(n),

where Σ(l) =
∑
k

[
l

k

]
ϕ(k). Further,

Σ(l) =
∑

1≤q≤l

∑
d|q

ϕ(d) =
(
l + 1

2

)
.

10


