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1. The best strategy to find the best spouse.

A person A is looking for a spouse, so A starts dating. After A dates the person B, A
decides whether s/he wants to marry B or to reject B and start dating somebody else.
Of course, after having dated two different persons B and C, A can tell which one was a
better choice (but not before).

Assume that during life time A will meet n people who potentially can become A’s
spouse. A plays it honest – A can get married only once and A cannot get married to a
person who was already rejected by A. In the end A does not think s/he is a looser only
if A got married to the best person out of all n people s/he has met.

Question 1. What is the best strategy for A to get the best partner?

Question 2. What are A’s chances of getting the best partner?

Example. The person A has a simple strategy – s/he marries the first date. Then
the chances of A to win are 1/n.

Let us call Stk the following strategy. A meets first k people and rejects them all.
Then A marries the first person who is better than all the previous ones. Of course, here
k can be 0, 1, 2, . . . , n− 1.

Question 1’. Which of the strategies Stk is the best?

Question 2’. What are the chances of A of getting the best partner if s/he follows
strategy Stk?

Theorem 1. If A uses strategy Stk then his/her chances are

C(k) =
1

n

(
1 +

k

k + 1
+ · · ·+ k

n− 1

)
.

Proof : Let us fix k, n and compute the chances of A to win.
a) There is a 1/n chance that the best partner will be number k + 1 – in this case A

wins.
b) There is a 1/n chance that the best partner is number k+ 2. In this case, A wins if

s/he rejects the date number k + 1. It means that the best partner out of the first k + 1
partners was not number k + 1. Chances for that are k/(k + 1). Total chances in this
case are (1/n) ∗ (k/(k + 1)).

c) There is a 1/n chance that the best partner is number k+ 3. In this case, A wins if
s/he rejects the dates number k+ 1 and k+ 2. It means that the best partner out of the
first k + 2 partners was neither number k + 1 nor k + 2. Chances for that are k/(k + 2).
Total chances in this case are (1/n) ∗ (k/(k + 2)).

Continuing this argument we prove the Theorem. 2

Example.
a) n = 2: C0 = C1 = 1/2.
b) n = 3: C0 = 1/3, C1 = 1/2, C2 = 1/3.
c) n = 4: C0 = 1/4, C1 = 11/24, C2 = 10/24, C3 = 1/4.
d) n = 5: C0 = 1/5, C1 = 25/60, C2 = 26/60, C3 = 21/60, C4 = 1/5.

1



2

Now, we want to estimate, given n, for which k the number Ck is the greatest. To do
that consider the difference

Dk := Ck − Ck−1 =
1

n

(
1

k
+

1

k + 1
+ · · ·+ 1

n− 1
− 1

)
.

Clearly, Dk are positive for k = 1, . . . , k0 and negative for k = k0 + 1, k0 + 2, . . . , n − 1.
So, Ck is the greatest when k = k0.

For k0 we have (approximately)

1

k0

+
1

k0 + 1
+ · · ·+ 1

n− 1
≈ 1. (1)

Lemma 1.

1 +
1

2
+

1

3
+ · · ·+ 1

n− 1
= lnn+ γ + a(n),

where 0 < γ < 1 is some constant and a(n) is a small number for large n.

Proof : a) Consider the graph of function y = 1/x. Then 1/2 + 1/3 + · · · + 1/(n − 1) is
less than the area under the graph on the segment 1 6 x 6 n. This area equals lnn, so
1 + 1/2 + 1/3 + · · ·+ 1/n < ln(n) + 1.

b) On the same graph we see that 1/2 + 1/3 + · · · + 1/(n − 1) is greater than the
area under the graph on segment 2 6 x 6 n, which equals ln(n) − ln(2). So, 1 + 1/2 +
1/3 + · · · + 1/(n − 1) > ln(n) − ln(2) + 1 > ln(n). Moreover, the difference between
1/2 + 1/3 + · · ·+ 1/(n− 1) and ln(n)− ln(2) is growing with n.

The Lemma follows from combining a) and b). 2

Note that Lemma 1 implies that 1 + 1/2 + 1/3 + · · · =∞. The constant γ is called the
Euler constant, cf. Exercise 1.

Thus, for large n, formula (1) can be rewritten as ln(n)− ln(k0) ≈ 1, that is ln(n/k0) ≈
1. So, k0 is approximately n/e.

In fact, one can show that for any n, k0 is either integer part of n/e, [n/e], or [n/e] + 1.

In the same way Ck0 is approximately 1/e. So, the chances of A to win decline with n
from 1/2 (n = 2 case) to 1/e (“n =∞” case).

Fact. The strategy Stk0 is indeed the best strategy of all possible strategies.

2. Stable marriage

2.1. Simple stable marriage. Consider n men and n women. We would like to marry
all of them to each other, meaning to pair them up, so that in each pair there is a man
and a woman. We will call such pairing a matching. There are n! matchings.

Let M be a matching. Suppose we have married couples (m1, w1) and (m2, w2). Sup-
pose m1 prefers w2 to w1 and w2 prefers m1 to m2. In this case, the matching is not stable
since m1 and w2 would leave their partners and marry each other. Such pair (m1, w2) is
called a blocking pair. A matching is called stable if there are no blocking pairs.

Question. Given lists of preferences, does there exist a stable matching?

Examples. a) Suppose all men and all women have the same list of preferences. Then
there exists a unique stable matching – the best man marries the best woman, the second
best man marries the second best woman, etc.

b) Suppose all men have the same preferences. Then there is a unique stable matching.
Namely, the best woman marries her first preference, then the second best woman marries
her first preference out of men left, then the third marries from men left, and so on.
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c) Suppose any two men have different first preferences. Then there is at least one stable
matching: all men marry their first choices. If, in addition, all women have different first
preferences then there is another stable matching.

d) Let n = 3, let we have preferences:

men women

1, 2, 3 2, 3, 1

3, 2, 1 2, 1, 3

2, 1, 3 3, 1, 2

That is the first man prefers the first woman to the second and the second to the third, the
second man prefers the third women to the second and the second to the first, etc. There
are 3 stable matchings: {(1, 1), (2, 3), (3, 2)}, {(1, 2), (2, 3), (3, 1)}, {(1, 3), (2, 2), (3, 1)}.
The algorithm.
Start with all men and women free.
While there is a single man m, do:

Let w be the best woman in m list who m did not propose to yet.
Make m propose to w.(but not before)
If w is free then m and w become engaged.
If w is engaged and likes her party better than m then m is rejected.
If w is engaged and likes m better than her party then w breaks up with her partner
and gets engaged to m.

If all men are engaged, marry all the engaged couples.

Theorem 2. The algorithm always stops at some point.

Proof : Each man cannot propose more than n times. If a man proposes the nth time (to
the worst women on his list), it means that all other women have rejected him (or broke
up with him for somebody else). Hence, all other women are engaged and the woman he
proposes to is bound to be free. 2

Theorem 3. The resulting matching is stable.

Proof : Suppose (m,w) is a blocking pair. It means that m has proposed to w and either
was rejected or their engagement was broken. In both cases w got a better partner then
m. Notice that after a woman got engaged her next partners get only better. So, (m,w)
cannot be a blocking pair and we have a contradiction. 2

Note that we proved that the algorithm stops and produces a stable matching in no
more than n2 cycles. This is very fast: even to check that some given matching is stable
one has to check n2 possible blocking pairs!

Corollary 4. For any list of preferences there is at least one stable matching.

Theorem 5. Any use of the algorithm (with men as proposers) yields the same result.

Proof : Suppose we have a result of our algorithm, M1, and another stable matching M2.
Suppose a man m is married to w1 in M1 and to w2 in M2. We claim that m prefers w1

to w2.
Suppose m prefers w2 to w1. It means that w2 has rejected m at some point when the

algorithm produced M1. Thus some men were rejected by stable partners. Without loss
of generality, assume that it happened the first time when w2 rejected m.
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Then the partner of w2 in M1 at the time when she rejected m, we call him m1, can have
no stable partners better than w2. Then (m1, w2) is a blocking pair in M2. Contradiction.

Thus, in any matching we can get from our algorithm, each man obtains the best
partner he can get in ANY stable matching. Obviously, such a matching is unique. 2

Theorem 6. In the resulting matching each man gets the best partner he can have in a
stable matching, and each woman gets the worst partner she can get in a stable matching.

Proof : We have already proved the first part. Now, let M0 be the matching obtained
from the algorithm. Let M be some other stable matching. Suppose a woman w likes her
partner in M0, m1, more than her partner in M1, m2. Then the pair (m2, w) is blocking
for M1. 2

Corollary 7. Pair up each man with his best stable partner. Then it is a matching,
moreover, this matching is stable.

We will call the stable matching produced by the algorithm with man as proposers the
men-oriented matching and denote it M0.

Note that the stable matching is unique if and only if the men-oriented version and
the women-oriented version of the algorithm give the same result.

Theorem 8. Let M1,M2 be stable matchings. Let m and w be matched in M1 but not
in M2. Then one of them prefers M1 and another one prefers M2.

Proof : Denote X1 the set of men who like M1 better, Y1 the set of women who like M1

better. Also denote X2 the set of men who like M2 better, Y2 the set of women who like
M2 better.

Then in M1 there is no pair (m,w), such that m ∈ X1, w ∈ Y1. Otherwise such pair
would block M2. In particular |X1| 6 |Y2|. Similarly, in M2 there is no pair (m,w), such
that m ∈ X2, w ∈ Y2 because such pair would block M1. In particular |Y2| 6 |X1|.

It means that |Y2| = |X1| and all men from X1 are matched to women in Y2, and all
men from X2 are matched to women from Y1. 2

Corollary 9. Let M1, M2 be stable matchings. Then the number of people prefering M1

to M2 equals the number of people prefering M2 to M1.

Let M1,M2 be two stable matchings. We will say M1 6 M2 if no man prefers M1 to
M2. Then M2 > M1 if no woman prefers M2 to M1. Some remarkable properties of this
ordering are described in Exercise 5.

2.2. Some generalizations. Suppose we have the same problem with less number of
men than women. If we apply the same (men-oriented) version of the algorithm, we
obtain a stable pairing. So, a stable pairing always exists. In fact, all Theorems 2-8 still
hold true, cf. Exercise 8.

Theorem 10. In all stable matchings the set of unmatched women is the same.

Proof : Let w be unmatched in some stable matching M1 but matched in M0 with m.
Then w is the best stable partner to m (analogously to Theorem 6), and pair (m,w)
blocks M1. 2

Let us now allow people declare some partners totally unacceptable. We think that a
person would rather stay single than marry an unacceptable partner. Again, in this case
one can prove analogs of Theorems 2-8, cf. Exercise 9.
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Theorem 11. In all stable matchings the sets of married men and women are always
the same.

Proof : Let M1,M2 be two stable matchings. Let’s construct a directed graph. Draw a
vertex for each man and for each woman. Draw an edge from a man m to a woman w if
m and w are married in M1. Also draw an edge from a woman w to her partner in M2.
So, in each vertex, at most one edge is coming in and at most one edge is coming out.

Suppose there is a man m matched in M1 but not matched in M2. Then starting at
m there is a path. This path cannot have loops, so it is unique and must end. Each man
on this path prefers M1 (applying the analog of Theorem 8), so it cannot end on a man.
Similarly, each woman on this path prefers M2, so the path cannot end on a woman.
Contradiction. 2

Some other generalization are described in Exercises 11 and 12.

2.3. False preferences. Suppose some group of people found out the lists of preferences
submitted by others. These people want to falsify their lists of preferences in order to
obtain a better partner. Curiously, one can prove

Theorem 12. Let M0 be the men-optimal matching with honest preference lists. Then
no coalition of people can falsify their preferences in such a way that all members of the
coalition get a better partner in some stable matching based on false list of preferences
than in M0.

Suppose we have a women oriented society, meaning the women-oriented version of
algorithm is used.

Theorem 13. Men can falsify their preferences in such a way, that women oriented
version of the algorithm produces the same result as men oriented version of algorithm
based on honest preferences.

Proof : Men can declare all women except (worse then) their best stable partner unac-
ceptable. 2

3. Exercises

1. Recall that the Euler constant γ is given by

γ = lim
n→∞

(1 + 1/2 + 1/3 + · · ·+ 1/n− lnn); (2)

Use you calculator/computer to show that the Euler constant is γ = 0.577216... . What
should be n in (2) to get the kth decimal digit of γ correct?

2. Recall that the number e is given by

e =
1

0!
+

1

1!
+

1

2!
+ ...

1

n!
+ ... . (3)

Use your calculator/computer to show that e = 2.718281828... . What should be n in (3)
to get the kth decimal digit of e correct? Compare to Exercise 1.

3. A person meets n possible future spouses one by one in some order. S/he can
either marry or reject the person s/he’s just met; then meet another person. S/he can
get married only once and s/he cannot marry a person which s/he has already rejected.
We say s/he wins if s/he marries one of the best two choices out of all n options. Find a
strategy which gives more than fifty percent chance to succeed.
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4. Let Fn be the Fibonacci numbers, that is F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2. Prove
that there exist lists of preferences for n men and n women, such that there are at least
Fn stable matchings.

5. Consider a problem of stable marriage.
a) Prove that for any two stable matchings M1, M2, there exists a unique stable

matching M , such that M1 6 M , M2 6 M and there is no stable matching N such that
M1 6 N , M2 6 N and N 6 M . Denote M = M1 +M2.

b) Prove that for any two stable matchings M1, M2, there exists a unique stable
matching M such that M1 > M , M2 > M and there is no stable matching N such that,
M1 > N , M2 > N and N > M . Denote M = M1 ∗M2.

c) Let M1,M2,M3 are stable matchings. Prove M1∗(M2+M3) = (M1∗M2)+(M1∗M3).
d) Let M1,M2,M3 are stable matchings. Prove M1+(M2∗M3) = (M1+M2)∗(M1+M3).

6. Let n = 4. In this case we have at most 10 stable matchings. The following lists or
preferences allow exactly 10 stable matchings:

men women

1, 2, 3, 4 4, 3, 2, 1

2, 1, 4, 3 3, 4, 1, 2

3, 4, 1, 2 2, 1, 4, 3

4, 3, 2, 1 1, 2, 3, 4

Find all 10 stable matchings and compute products and sums of all stable matchings.

7. Prove Theorem 12.

8. Prove Theorems 2-8 when numbers of men and women are different.

9. Prove Theorems 2-8 when unacceptable partners are allowed.

10. Consider the following stupid algorithm. It starts at a random matching. Given
a matching, the stupid algorithm finds some blocking pair (m1, w2) (say, m1 is matched
to w1 and w2 is matched to m2), and forms a new matching which has all the same pairs
except for (m1, w1)and (m2, w2) which are changed to (m1, w2), (m2, w1). It stops if the
matching is stable. Is it true that the stupid algorithm always stops?

11. The hospital/residents problem. Suppose there are several hospitals and
several residents. Each hospital can allocate some number of residents (may be more
than one and different hospitals can have different sizes). Both residents and hospitals
have lists of preferences. The definition of stable matching is the same as in the stable
marriage problem. Formulate and prove Theorems 2-13 adjusted to this setting.

12. The roommate problem. Suppose we have 2n people which we want to allocate
to n rooms (each room is for two people). Each person has a list of preferences. The
stable matching is defined as in the stable marriage problem. Find an example when no
stable matching is possible.

Please email your remarks and questions to mukhin@msri.org .
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