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 Geometric Combinatorics is a relatively new and rapidly growing branch of 
mathematics. It deals with geometric objects described by a finite set of building blocks, 
for example, bounded polyhedra and the convex hulls of finite sets of points. Other 
examples include arrangements and intersections of various geometric objects. Typically, 
problems in this area are concerned with finding bounds on a number of points or 
geometric figures that satisfy some conditions, or make a given configuration “optimal” 
in some sense.  

Geometric combinatorics has many connections to linear algebra, discrete 
mathematics, mathematical analysis, and topology, and it has applications to economics, 
game theory, and biology, to name just a few. 
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Problems encountered within geometric combinatorics come in various forms; 
some are easy to state. Nevertheless, there are lots of problems that are extremely hard to 
solve, including a great many that remain open despite the efforts of some leading 
mathematicians.  

The following definitions, theorems, and problems should give you some flavor 
of this branch of mathematics. 
 
 A convex planar figure is the intersection of a number (finite or infinite) of half-
planes. The intersection of a finite number of half-planes is a convex polygon. Convex 3-
d figures and convex polyhedra are defined similarly (replacing half-planes with half-
spaces). Equivalently, a figure F is convex if for every two points A and B of F, F 
contains the entire line segment AB. 
 If S is any set of points, the convex hull of S (denoted by conv(S)) is the smallest 
convex figure containing S (clearly, conv(S) is the intersection of all convex sets 
containing S). 

 A convex combination of points  is a linear combination ∑ in 
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 THEOREM (Carathéodory’s Theorem).   For S in n , each point of conv(S) is a 
convex combination of at most  n + 1 points of S. 
 
 THEOREM (Radon’s Lemma).   Let S be a set of size  n + 2  or greater in n. 
Then S can be partitioned in two sets R and B (red and blue)  such that 

. Λ≠∩ )()( BconvRconv
 
 THEOREM (Helly’s Theorem).   Suppose  S = { } is a set of convex 
sets in 
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PROBLEMS 
 

1. Prove that if each three of  n  points in a plane can be enclosed in a circle 
of radius 1, then all  n  points can be enclosed in such a circle. 

 
2. Given 7 lines in a plane, if no two of them are parallel to one another 
prove that there exists a pair of lines with the angle between them less than . °26
 
3. How many acute inner angles can a convex n-gon have? 
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4. (a) Given  points in a plane. Prove that we can choose 3 out of these 
points so that they form a triangle with one angle at most 

4=n
°= 45α . Also prove that 

there exists such a configuration of 4 points in a plane that every 3 of them form a 
triangle with each angle at least . °45

  (b) Same as in part (a), except that 5=n  and °= 36α . 
  (c) Same as in part (a), except that 6=n and °= 30α . 
  (d) Prove that for any  n  points in a plane ( ), it is possible to choose 

3 points so that they form a triangle such that one of its angles is no larger than 

3≥n

n
°180 . 

Prove also that there exists such a configuration of  n  points that in any triangle 

formed by 3 of these points each angle is at least 
n
°180 . 

 
5. Let  be points. Find all possible values of  n  such that all 
these points can be positioned in such a way that none of the angles  is 
obtuse. 

nMMM ,...,, 21

kji MMM∠

(a) assume that all these points lie in a plane; 
(b) assume that the points can be placed anywhere in 3-d space. 

 
6. Same as problem 5, except that now all the angles kji MMM∠  must be 
acute. 

 
7. Same as problem 5, except that now we require all the triangles  
be right triangles. 

kji MMM

 
8. Same as problem 5, but all the triangles  are required to be 
obtuse. 

kji MMM

 
9. Prove that 

(a) any convex polygon of area 1 can be covered by a parallelogram of area 2; 
(b) a triangle of area 1 cannot be covered by a parallelogram of area less than 
2. 

 
10. Let  M  be a convex polygon with perimeter  P  and area  S.  Prove that 

there exists a circle of radius 
P
S  with all points in  M. 

 
11. (a)   Prove that of all triangles of a given perimeter  P, an equilateral 
triangle has the largest area. 

  (b)   Prove that of all the convex quadrilaterals of a given perimeter  P, a  
square has the largest area. 
  (c)   Prove that of all the convex  n-gons of a given perimeter  P, a regular 
n-gon has the largest area. 
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12. Let k be a unit circle. Find the largest number n of unit circles  k1, k2,… , kn 
such that ki touches  k  for every  i= 1, 2, … , n,  and 

a. ki  and  kj  do not intersect for any njiji ≤≤≠ ,1, ; 
b. the interior of  ki  does not contain the center of  kj  for any 

. njiji ≤≤≠ ,1,
 

13. Let  s  be a square of side 1.  Find the largest number  n  of squares  s1, s2, 
… , sn  such that  si  is a square of side 1 and it touches  s  for every  i= 1, 2, … , n, 
and  si,  sj  do not intersect for any njiji ≤≤≠ ,1, . 
 

       14. Let  F  be a planar figure, and let  h(F)  denote the maximal number of 
copies of  F  obtained from  F  by translation and such that every copy touches  F and   
no pair of these copies intersect each other. 
  (a)   Find  h(T)  where  T  is a triangle. 
  (b)   Find  h(S)  where  S  is a square. 

 
15. Let  k  be a circle of radius  2R.  Find the least number  n  of circles  k1, k2, 
… , kn  of radius  R  each so that  k  can be covered by  k1, k2, … , kn. 

 
16. Let  k  be a unit circle, and let  k1, k2, …  be circles of radii less than 1.  Let  
n  be the minimal number such that  k1, k2, … , kn  cover  k.  Prove that 
  (a)   ; 3≥n

  (b)   if the radii of  k1, k2, …  are less than  
2
3 , then  ; 4≥n

  (c)   if all the radii are less than  
2
2 , then  . 5≥n

Is it possible to improve the estimates in parts (a), (b), and (c)? 
 
17. Let  k  be a unit circle, and let  k1, k2, … be circles of radii  r1, r2, … . 
Prove that 

(a) If ,...)2,1(
2
1

=> iri , then it is not possible to place 2 of these circles  ki, 

kj  inside  k  in such a way that ki  and  kj  do not intersect. 
(b) If 332 −>ir , then it is not possible to place 3 circles  inside  k  
in such a way that no two of   intersect each other. 

mji kkk ,,

mji kkk ,,
 

18. Let  M  be a convex polygon and suppose that  M  is not a parallelogram. 
Prove that  M  can be placed inside a triangle obtained by producing 3 of its sides. 

 
19.  Given  n  parallel line segments in the same plane, prove that if there 
exists a line that intersects each three of them, then there is a line intersecting all 
these line segments. 
 

 4



20. Let A, B be points in an annulus bounded by concentric circles with radii 
Rr ≤ , and suppose that AB = 1.  Find the smallest possible value of . °∠ )( AOB

 
21.         (a)   Find , the radius of the smallest circle  k  such that it is possible to  
         place  n  points inside  k  (or on  k) in such a way that one of the points is in       
         the center of  k, and the distance between any two of these points is at least 1. 

nR

  (b)   How many points can be placed inside (or on) a circle of radius 2 in  
         such a way that one of these points is in the center of the circle, and the  
         distance  between any two of the points is at least 1? 

 
22. Suppose there is a non-transparent spherical planet  P  whose diameter is  
d. Is it possible to place 8 observation stations on the surface of the planet in such a 
way that any object approaching the planet would be seen by at least 2 of these 
stations when the object is a distance  d  above the planet’s surface? 

 
23. An art gallery is in a polygonal room (with finitely many sides, and 
possibly non-convex) and there is one painting hung on each wall. Suppose that for 
any 3 paintings, there is a point in the gallery where those 3 paintings are visible. Is 
there always a point of the gallery from which all paintings are visible? 
. 

 
 
 
 
 

SOME OPEN PROBLEMS 
 

I. Throw  k  points down in the unit square and find the area of the largest 
 convex set in the square containing none of the  k  points. Let  f(k) be the 
 minimum (of the largest areas) over all sets of  k  points. Find good upper 

 and lower bounds on f(k). (For k = 3 it is known that 
4
2)3(

3
1

≤≤ f .) 

 
 
II. What is the largest area that an n-gon of unit diameter can have? 
 
 

 
III. Can every set of 8 points in the plane be partitioned to form 2 triangles 
 and a line segment so that the segment cuts the interior of both triangles? 
 (Notice: this is a Radon relative). 
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