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VERA SERGANOVA

Complex numbers were discovered in order to solve polynomial equations. If we
introduce i =

√
−1, then any complex number can be written in the form z = a + bi,

where a and b are real numbers. The sum and the product of complex numbers are
defined as

(a + bi) + (c + di) = (a + b) + (c + d) i,

(a + bi) (c + di) = (ac− bd) + (ad + bc) i.

We discuss today some applications of complex numbers to geometry. One can think
about complex number z = a+bi as a vector on the plane whose x-coordinate is a and
y-coordinate is b. Then the addition (subtraction) of complex numbers is the same
as the addition (subtraction) of vectors. To understand multiplication geometrically
we define the argument α = arg z of a complex number z as the counterclockwise
angle of the vector z with x-axis. For example, arg i = 90◦, arg (i − 1) = 135◦,
arg (1 − i) = −45◦. The absolute value |z| of a complex number z is by definition the
length of the vector

|z| =
√

a2 + b2.

For example, |i| = 1 and |i− 1| =
√

2.
Problem 1. Show that to multiply two complex numbers one has to add argu-

ments and multiply absolute values, that is

|zw| = |z||w|, arg zw = arg z + arg w.

Problem 2. Prove that the equation zn = 1 has exactly n complex solutions and
draw them all on the complex plane.

Problem 3. How many times during the day do the minute and hour hands on
the clock face coincide?

Problem 4. (Strange clock). This clock’s minute and hour hands have the same
length. How many times during the day you can not use this clock to check time?

Complex conjugation. If z = a+bi is a complex number, then the conjugate number
is defined as z̄ = a − bi.

Problem 5. Show that the complex conjugation is the reflection with respect to
x-axis in the complex plane. Check that

z + w = z̄ + w̄, zw = z̄w̄, arg z̄ = − arg z, |z̄| = |z|, zz̄ = |z|2.
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Using properties of complex conjugation we can divide by any complex number except
0 using the rule

z

w
=

1

|w|2zw̄.

Problem 6. The pirates hid a treasure chest under the ground on a small
Caribbean island. You stole their map with instructions. The instructions say, “Start
from the gallows, go to the oak tree, turn right 90◦, walk the same distance as from
the gallows to the oak tree, put a sword at the point you stop. Return to the gallows,
go to the birch tree, turn left 90◦, then walk the same distance as from the gallows
to the birch. Put another sword at the point where you stop. Dig at the midpoint
between the two swords.” You came to the island. The birch tree and the oak tree
are there, but, alas, no gallows! Can you find the treasure?

Problem 7. Prove that three distinct points z1, z2 and z3 lie on a line if and only
if z1−z3

z2−z3

is real. Prove that four distinct points z1, z2, z3 and z4 lie on a circle if and
only if

γ (z1, z2, z3, z4) =
z1 − z3

z2 − z3

÷ z1 − z4

z2 − z4

is real.
The number γ (z1, z2, z3, z4) is called the cross-ratio of four numbers z1, z2, z3 and

z4.
Problem 8. Check that a transformation F of the complex plane defined by the

formula

F (z) = Az + B,

where A and B are complex numbers maps a line to a line and preserves angles. If,
in addition, |A| = 1, then F preserves distances. If A 6= 1, then F has a unique fixed
point and F is a composition of a rotation and a dilation with centers at the fixed
point.

Problem 9. Let G be a transformation of the complex plane which maps a line to
a line and preserves angles. Then either G is as in Problem 8 or G is a composition
of some F as in problem 8 and the complex conjugation.

Problem 10. Use problem 8 to prove that a composition of two rotations (centers
may be different) is either a rotation or a parallel translation.

Define now a transformation of the complex plane by a formula

F (z) =
Az + B

Cz + D

for some complex numbers A, B, C, D such that AD − BC 6= 0. It is not defined at
the point −D

C
. To define it everywhere consider one more point ∞ and put

F (∞) =
A

C
, F

(−D

C

)

= ∞.
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Problem 11. Prove that F is a map of the complex plane with ∞ onto itself.
Find the formula for the inverse map.

A transformation F of extended complex plane defined above is called a linear

fractional transformation.

Problem 12. Check that a linear fractional transformation preserves the cross-
ratio, more precisely

γ (F (z1) , F (z2) , F (z3) , F (z4)) = γ (z1, z2, z3, z4)

for any complex numbers z1, z2, z3, z4 and a linear fractional F .
Use this property to show that a linear fractional transformation maps any line to

a circle or a line, and any circle to a circle or a line.
Problem 13. Inversion with center O and radius R is a map of the extended

plane to itself which maps a point X to the point X ′ lying on the ray OX such that

|OX||OX ′| = R2.

In addition, O goes to ∞, and ∞ goes to O. Let O be the origin. Prove that the
inversion can be defined by the formula

F (z) =
R2

z̄
.

Using this formula prove that an inversion maps any line to a circle or a line, and
any circle to a circle or a line.

Problem 14. Check that the transformation

F (z) =
iz − 1

z − i

maps the unit circle to the real axis (extended by ∞ ). A point z on the unit circle
has rational coordinates if and only if F (z) has a rational coordinate on the real line.

Problem 15. Use the previous problem to find all Pythagorean triples, which are
integers (a, b, c) such that c2 = a2 + b2. Hint: first look for rational solutions.

Inversion is very useful for straightedge and compass constructions.
Problem 16. Given a circle with center O and radius R and a point X, construct

the image of X under the inversion with center O and radius R using straightedge
and compass.

Problem 17. Given a point P and two circles C1 and C2, construct a circle
passing through P and tangent to C1 and C2.

Problem 18. (Apollonius problem) Given three circles, construct a circle tangent
to these three circles.

Problem 19. Suppose that your straightedge is broken. Any construction which
can be performed using straightedge and compass can be done using compass only.
We assume that a line is “constructed” if we have constructed two distinct points on
it.
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Spherical Geometry and stereographic projection.

We know that we do not live in a plane; assume that we live on a sphere of a large
radius. We do not notice the difference if we do not move very far from home. Let
us consider geometry on a sphere. To define a line, we should recall that a line gives
the shortest path between two points. If you fly from San Francisco to Tokyo, what
is the shortest path? Given two points P and Q on a sphere, define the distance
d (P, Q) between them as the length of the shortest arc of a big circle through P and
Q. (By a big circle we mean the circle whose center coincides with the center of the
sphere. If P and Q are not opposite to each other, there is exactly one big circle
through them.)

Problem 20. Check the triangle inequality

d (P, Q) ≤ d (P, R) + d (R, Q)

for any three points on the sphere. Use it to prove that a shortest path between two
points on the sphere is given by an arc of a big circle through them.

Problem 21. Any transformation of a sphere which preserves distance is a rota-
tion or a reflection in a big circle.

Two triangles on a sphere are congruent if there is a rotation or a reflection which
moves one triangle to another.

Problem 22. Prove that two triangles are congruent if and only if they have the
same angles.

Problem 23. The sum of angles of any triangle on a sphere is greater than 180◦.
Problem 24. Three lines in general position divide the plane in 7 parts. In how

many parts do three big circles divide a sphere?
Problem 25. Consider a triangle on a sphere with angles α, β and γ. Let s denote

the area of the triangle, assume that the area of the whole sphere is 1. Prove the
formula

2s =
α + β + γ − 180◦

360◦
.

Problem 26. In the plane geometry the angle bisectors of a triangle meet at one
point. Is it true on a sphere? The same question for medians and altitudes of a
triangle.

Let O denote the North pole of a sphere S and Π be the plane containing the
equator. For each point P on the sphere let P ′ be the point of intersection of the line
OP and the plane Π. The map f (P ) = P ′ maps the sphere S (without North pole)
to Π. This map is called a stereographic projection.

Problem 27. Check that

|OP ||OP ′| = 2R2,

where R is the radius of the sphere S. Consider the inversion in 3-dimensional space
with center O and radius

√
2R. Check that this inversion maps a sphere not passing
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through O to a sphere, and a sphere passing through O to a plane. In particular, S

goes to Π.
Problem 28. Check that the stereographic projection maps a circle on S to a

circle or a line on Π, and that a big circle goes to a circle (line) which intersects the
equator at two opposite points.

Problem 29. Check that a reflection on S corresponds to an inversion on Π and
a rotation corresponds to a linear fractional map

F (z) =
Az + B

−B̄z + Ā
.

Here we assume that the radius of S is 1.


