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Background

At the Bay Area Math Meet at USF in 2004, Problem 15 was included mainly to ensure that there would
be no perfect papers. The statement of the problem is as follows.

Let θ = 2π/17. Compute cos θ + cos 4θ + cos 9θ + cos 16θ + · · ·+ cos 162θ.
Upon seeing the number 17, I immediately thought of the Gauss construction of the heptadecagon. When
I got home, I went to my well-worn volume of 100 Great Problems of Elementary Mathematics [Dörrie 1].
Gabriel Carroll once told me that he read it over the summer when he was in the eighth grade. I have only
been able to work my way through about twenty of the problems in the past 30 years. In any case, by just
following the method of Gauss through the first stage of the heptadecagon construction, I was able to solve
Problem 15. However, I was mystified by how someone could dream up such a procedure, especially when
product of a sum of 8 complex numbers times another sum of 8 complex numbers gave 64 complex numbers
that had a simple integer sum. When I saw Paul Zeitz later in the year at ARML, I mentioned my solution
to him and he told me that he had not used this method. In fact, his problem can be solved for any prime
of the form 4k + 1. This talk then, is to share with you the results of my research in this area in an attempt
to understand these mysteries.

A Review of Some Preliminaries

From Euler, we have eiθ = cos θ + i sin θ. See [Problem 1]. It is then easy to see that eiθ + e−iθ =
2 cos θ and (eiθ)n = eniθ = cos nθ + i sinnθ. (DeMoivre’s Theorem.) Summing a geometric sequence gives
1+z+z2 +z3 + · · ·+zn−1 = (zn−1)/(z−1). Therefore, zn−1 = (z−1)(zn−1 +zn−2 + · · ·+z2 +z+1). Note
that e2πki/n is a solution of zn−1 = 0 for all k ∈ N. For n distinct solutions take k ∈ {0, 1, 2, 3, . . . , n− 1} or
for n odd, k ∈ {0,±1,±2, . . . ,±(n− 1)/2}. If k is relatively prime to n, e2πki/n is called a primitive nth root
of unity. Using the mod notation introduced by Gauss in Disquisitiones Arithmeticae [Gauss 2] we have that
e2πki/n = e2πmi/n if k ≡ m (mod n). (a ≡ b (mod n) iff a− b is a multiple of n.) Note that the sum of the
solutions is 0 and the product of the solutions is −1 when n is odd. The graph of these solutions in the plane,
with the x−axis as the real axis and the y−axis as the imaginary axis, is a set of n points on the unit circle,
beginning at (1, 0) and equally spaced around the circle. In other words, these solutions are the vertices of
a regular n−gon. If cos 2π/n can be constructed with a straightedge and compass then the regular n−gon
can be constructed by constructing a perpendicular to the x−axis at cos 2π/n. The intersection with the
unit circle is the first vertex of the n−gon after (1, 0). The notation Z/17Z will refer to the set of numbers
{1, 2, 3, . . . , 17} with multiplication being defined modulo 17. For example 13 · 5 = 65 ≡ 14 (mod 17).

Constructibility

A figure can be constructed with a straightedge and a compass if and only if the points required are found
by using only the following three constructions: the intersection of two lines, the intersection of a line and a
circle, or the intersection of two circles. This is equivalent to saying the coordinates of the points are sums,
differences, products, quotients and interated square roots of rational numbers. For example 3
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See [Problem 2]. For more information on constructibility see [Dickson 3] and [Martin 4]. When Gauss
was 18 years old on March 30, 1796, he discovered that regular polygons with a prime number of sides
are constructible if that prime is of the form 22n

+ 1. In Disquisitiones Arithmeticae he writes “ It is
certainly astonishing that although the geometric divisiblility of the circle into three parts and five parts
was already known in Euclid’s time, nothing was added to this discovery for 2000 years. And all geometers
had asserted that, except for those sections and the ones that derive directly from them (that is division
into 15, 3 · 2µ, 5, 5 · 2µ and 2µ parts), there are no others that can be effected by geometric constructions.”
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Gauss was so taken with this discovery that he changed his field of study from Philology to Mathematics and
requested that a regular 222

+ 1 sided polygon by engraved on his tombstone. Although his wishes were not
carried out, at the base of a statue of Gauss in his birthplace, Brunswick, there is a golden regular stellated
17-gon formed from the longest diagonals of a regular 17-gon.

Fermat Numbers

Fermat went to his grave thinking that his conjecture that the sequence of Fermat numbers, Fn = 22n

+1
generated prime numbers for n ≥ 0 was true. Euler, in 1730, showed that 225

+ 1 = 4, 294, 967, 297 is
not prime by using a technique that Fermat himself had discovered. Euler was able to show that an odd
prime divisor of 22n

+ 1 must be of the form 2n+1k + 1. See [Problem 3]. So Euler began looking at
{64k + 1} = {65, 129, 193, 257, 321, 385, 449, 513, 577, 641, . . . }. Those which are prime are 193, 257, 449,
577, and 641. Dividing these numbers successively into 225

+1, Euler discovered upon the fifth division that
225

+ 1 = 641 · 6700417. In 1877, Edward Lucas proved that the k must be even, so only primes of the
form 128k + 1 need be checked. There are only 21 numbers of this form less than

√
6700417 and only 6 of

them are prime. Therefore after 6 divisions one can conclude that the other factor, 6700417, is prime and
232 +1 = 641 ·6700417 is completely factored. As an exercise, see how long it takes you to follow these steps.

Fermat also claimed to have a proof that every prime of the form 4k + 1 has a unique representation as
a sum of two squares. Euler in 1749, published a proof. Note that 225

+ 1 = (216)2 + 12 = 204492 + 622642.
Since 225

+ 1 is one more than a multiple of 4 and primes of this form have only one decomposition into the
sum of two squares, this proves that it is not prime without any division. (Of course the question is, where did
20449 and 62264 come from?) For another proof that 225

+1 is composite that does not require any division
see [Problem 4]. An apocryphal story that has been around for over one hundred years is that Fermat was
aware that the Chinese had a conjecture that n|2n−2 implies n is prime. It is discussed in the 1973 book by
Honsberger [7]. To see how this conjecture would prove Fermat’s claim see [Problem 5]. Empirical evidence
would certainly support the conjecture. It is true for integers less than 341 and 2341 has 103 digits. However,
2341 − 2 = 2(2340 − 1) = 2((210)34 − 134) = 2(210 − 1)(· · · ) = 2(1023)(· · · ) = 2(3 · 341)(· · · ) and 341 = 11 · 31
is not prime. Numbers such as 341 are called pseudoprimes. See [Honsberger 7] for more details. I believed
the story until recently, until I read in The New Book of Prime Number Records [Ribenboim 8] that it is
not true. Ribenboim also describes how the story originated in the late 19th Century in China and how this
conjecture came to be known in the West as an ”old Chinese” theorem.

In any case, Fermat could not have been more wrong. In the intervening years, no other prime Fermat
numbers have turned up. F5, F6, F7, . . . , F32 are known to be composite. There are 221 Fermat numbers
that are known to be composite. The smallest Fermat number of unknown status is F33. The largest
known compostite Fermat number is F2478782. The number that tells how many digits F2478782 has is a
number with 746188 digits. For example, if a number has a million digits, then it takes a seven digit
number, 1, 000, 000 to tell this. The up-to-date information on the Fermat Numbers can be found at
http://www.prothsearch.net/fermat.html There are many interesting facts about Fermat numbers and I
originally planned to to talk about many of them, but the construction of regular polygons has displaced
them. I highly recommend the book 17 Lectures on Fermat Numbers to those interested in pursuing the
topic [ Kř́ıžek 9].

Problem 15 on the BAMM 2004 Test of Ingenuity

Now we will look at the solution that Paul Zeitz sketched for me. Let θ = 2π/17 , ζ = eiθ, and
let N = cos θ + cos 4θ + cos 9θ + cos 16θ + · · · + cos 162θ. Then 2N = 2 cos θ + 2 cos 4θ + 2 cos 9θ +
2 cos 16θ + · · · + 2 cos 162θ. Since 2 cos θ = eiθ + e−iθ, this gives 2N = ζ + ζ−1 + ζ4 + ζ−4 + ζ9 +
ζ−9 + · · ·+ ζ152

+ ζ−152
+ ζ162

+ ζ−162
. But {12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 122, 132, 142, 152, 162} =

{1, 4,−8,−1, 8, 2,−2,−4,−4,−2, 2, 8,−1, 4, 1} mod 17. The other 16 values are the same numbers with the
signs reversed, so N = ζ + ζ4 + ζ9 + · · · + ζ152

+ ζ162
. Paul now suggests adding 1 and squaring, so that

(N + 1)2 = (ζ0 + ζ + ζ4 + ζ9 + · · · + ζ152
+ ζ162

)2. He says, “You are now looking at sums of ζm2+n2
,

where 0 ≤ m,n ≤ 16 and the exponents are evaluated modulo 17 . . . Now you can cleverly count out the
incidences of 0, 1, 2 . . . , 16 among the exponents and you deduce that the non-zero values all occur with the
same frequency, but 0 occurs more often, giving a total squared sum of 17.” Therefore N +1 =

√
17 and the

answer to the question is N =
√

17− 1.
This idea is not restricted to Fermat primes or even primes of the form 4k +1. Gauss began investigating

the problem in Disquisitiones Arithmeticae, where in article 356 he proves for any integer k not divisible by
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for p ≡ 1 (mod 4). On the other hand for p ≡ 3 (mod 4) the first difference will be 0 and the second = ±√p.
Gauss then goes on to say, “ These theorems are so elegant that they deserve special note. We observe that
the upper signs always hold when for k we take unity or a quadratic residue of p and the lower when k is a
nonresidue. These theorems retain the same or even greater elegance when they are extended to composite
values of p. But these matters are of a higher level of investigation, and we will reserve their consideration
for another occasion.” It took Gauss from May 1801 until August 1805 to determine the sign of what are
now called Gauss Sums. For more information see [Savitt 10], [Rademacher 11], and [Ireland 12] in order
of increasing difficulty. I have found no easy introduction to the subject.

Construction of Regular Polygons

To get a better idea of regular polygon construction based on the complex roots of unity, let’s first construct
a regular pentagon. The vertices are the graph of the solutions to z5−1 = (z−1)(z4+z3+z2+z+1) = 0. Let
θ = 2π/5 and ζ = eiθ. Then the solutions to the equation are {ζ0, ζ1, ζ2, ζ3, ζ4}. Note that ζ1+ζ4 = ζ1+ζ−1

and ζ2+ζ3 = ζ2+ζ−2, Letting z = ζ1, the equation becomes ζ4+ζ3+ζ2+ζ1+1 = 0, or ζ−1+ζ−2+ζ2+ζ1+1 =
0. Since (a + a−1)2 = a2 + 2 + a−2, the equation can be rewritten as (ζ1 + ζ−1)2 + (ζ1 + ζ−1) − 1 = 0.
This is a quadratic equation and so ζ1 + ζ−1 = −1±

√
5

2 . But ζ1 + ζ−1 = 2 cos 2π/5. Since cos 2π/5 > 0,
cos 2π/5 = −1+

√
5

4 . Now construct a perpendicular to the x−axis at cos 2π/5. The intersection of the
perpendicular with the unit circle is the first vertex of the pentagon after (1, 0).

Now to tackle the heptadecagon. The procedure is taken from [Stewart 13] who based it on [Hardy 5].
As before the vertices are the graph of the solutions to z17 − 1 = (z − 1)(z16 + z15 + z14 + · · ·+ z + 1) = 0,
Let θ = 2π/17 , ζ = eiθ, and ζk for k ∈ {0,±1,±2, . . . ,±8} are the solutions. If a number a ∈ Z/17Z
generates Z/17Z, that is, {a, a2, a3, . . . , a16} = Z/17Z, then a is called a primitive root of Z/17Z. [Gauss
proved that Z/pZ has a primitive root a when p is equal to 2, 4, the power of an odd prime, or twice the
power of an odd prime.] 3 is a primitive root of Z/17Z. Then {ζ30

, ζ31
, ζ32

, ζ33
, . . . , ζ313

, ζ314
, ζ315

, ζ316} =
{ζ1, ζ3, ζ9, ζ10, ζ13, ζ5, ζ15, ζ11, ζ16, ζ14, ζ8, ζ7, ζ4, ζ12, ζ2, ζ6}. Now Gauss defines two periods of length 8 using
every other term.

x1 = ζ1 + ζ9 + ζ13 + ζ15 + ζ16 + ζ8 + ζ4 + ζ2

x2 = ζ3 + ζ10 + ζ5 + ζ11 + ζ14 + ζ7 + ζ12 + ζ6

[Note that x1 consists of all the powers that are squares in Z/17Z.] Now notice that x1 + x2 = −1 since
x1 + x2 is the sum of all the roots except ζ0 = 1. Now comes the amazing step of multiplying x1 · x2. After
long thought and much research I finally found a clear way to show the 64 terms in the product sum to give
x1 · x2 = −4. This means that x1 and x2 are the roots of the quadratic equation X2 + X − 4 = 0. Since it is
clear geometrically that x1 > 0, we have x1 = −1+

√
17

2 and x2 = −1−
√

17
2 . [At this point the solution to the

BAMM problem has been found since N = 2x1 = −1 +
√

17.] The next step in the Gauss construction is to
set up periods of length 4, taking every other term in x1 and x2.

y1 = ζ1 + ζ13 + ζ16 + ζ4 y2 = ζ9 + ζ15 + ζ8 + ζ2 y3 = ζ3 + ζ5 + ζ14 + ζ12 y4 = ζ10 + ζ11 + ζ7 + ζy

Now y1 + y2 = x1 and y1 · y2 = −1 so that y1 > y2 and y1 and y2 are roots of the equation Y 2−x1Y − 1 = 0
Similarly, y2+y3 = x2 and y3·y4 = −1 so that y3 > y4 and y3 and y4 are roots of the equation Y 2−x2Y −1 = 0
Note that y1 = ζ1 + ζ−4 + ζ−1 + ζ4 = 2 cos θ + 2 cos 4θ and y3 = ζ3 + ζ5 + ζ−3 + ζ−5 = 2(cos 3θ + cos 5θ) =
4 cos θ cos 4θ. So that z1 = cos θ and z2 = cos 4θ are the roots of the equation Z2 − y1Z + y3 with
z1 > z2. Use the values of x1 and x2 to solve for y1 and y3. Then use these values to solve for z1/2 =

cos 2π/17 =
1
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)
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Although this value is constructible [Problem 6], an elegant solution was discovered in 1893 by H. W.
Richmond that comes from substituting tan 4φ = 4 into the first quadratic X2 + X − 4 = 0 to get
X2 + 4X cot 4φ − 4 = 0. Then x1 = 2 tan 2φ and x2 = −2 cot 2φ. As a final problem, show that
y1 = tan(φ + π/4), y2 = tan(φ − π/4), y3 = tanφ, y4 = − cot φ, so that 2(cos 3θ + cos 5θ) = tanφ and
4(cos 3θ cos 5θ) = tan(φ − π/4). See [Stewart 13], [Baragar 14],[Tignol 15], [Hartshorne 17] for the Ga-
lois connection that completes the story on constructible regular polygons and the handout for Richmond’s
method.



Some Problems

(1) With x = iθ, use the power series representations , ex = 1 + x/1! + x2/2! + x3/3! + · · · , cos x =
1− x2/2! + x4/4!− · · · , and sinx = x/1!− x3/3! + x5/5!− · · · to prove eiθ = cos θ + i sin θ.

(2) Convince yourself that
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is constructible by constructing 17 + 3

√
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(3) If a is even and p is a prime that is not a factor of a and p|a2 + 1 (the notation a|b stands for a
divides b), then p = 4k+1 for some integer k. To show this, note that p is odd since it is not a factor
a. Therefore p = 4k + 1 or 4k + 3. Suppose p = 4k + 3. By Fermat’s little theorem, p|ap−1 − 1 =
a4k+3−1− 1 = a4k+2− 1. But a4k+2 +1 = (a2)2k+1− 1 = (a2 +1)[(a2)2k−2− (a2)2k−3 + · · ·−a2 +1].
Since p|a2 + 1 we have a4k+2 + 1 is a multiple of p. Therefore the difference of two multiples of p,
(a4k+2 + 1)− (a4k+2 − 1) = 2, is a multiple of p. But p is odd, so the assumption that p = 4k + 3 is
incorrect and p = 4k + 1. �
Using this fact and similar reasoning, write out the proof of the statement: If a is even and p is a
prime such that p - a and p divides a4 + 1, then p = 8k + 1. Using strong induction show that: If a
is even and p is a prime such that p - a and p|a2n

+ 1, then p = 2n+1k + 1 for some integer k. For
more detail see Dunham pp 239-235 [6].

(4) Note that 641 = 24 + 54 and 641 = 5 · 27 + 1. Now look at the first equation multiplied by 228 which
shows that 641|232 + 54 · 228. Use the second equation to show that 641|54 · 228 − 1. If a|b and a|c
then a|b ± c. Therefore 641|232 + 1. This proof is by G.T. Bennett and is an improvement on the
proof in Hardy pp14-15 [4]. I mention G.B. Bennett because at least one of his discoveries ( A five
piece dissection of a regular octagon that forms a square) was for over 50 years ascribed to another
man, who shall remain nameless.

(5) (From Honsberger [7] ) Prove that Fn|2Fn−2 for all n. It is true for n ≤ 4 by Fermat’s little theorem,
since the first four Fermat numbers are prime. Note that n + 1 < 2n for n > 4. Since 2a|2b if a < b,
it follows that 2n+1|22n

and 22n

= 2n+1k for some integer k. Now look at 2Fn − 2 = 222n
+1 − 2 =

2(222n

− 1) = 2(22n+1k − 1). Use the difference of two powers of k ( 1 = 1k) to factor. Then use the
difference of two squares to factor again. Since one of the final factors is Fn, the proof is completed.

(6) Solve the quadratic equations and show that cos 2π/17 is equal to the value stated and show that it
is equal to the radical expression in problem 2 that Gauss obtained.
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If you have comments, questions or find glaring errors, please contact me by e-mail at the following address:
tricycle222@earthlink.net


