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Note: All objects lie in the plane, unless otherwise specified. The expression “object
A touches object B” refers to tangent objects, e.g. lines and circles.

1. Definition of Inversion in the Plane

Definition 1. Let k(O, r) be a circle with center O and radius r. Consider a function
on the plane, I : R2 → R2, sending a point X 6≡ O to the point on the half line OX→,
X1, defined by

OX ·OX1 = r2.

Such a function I is called an inversion of the plane with center O and radius r (write
I(O, r).)

It is immediate that I is not defined at p.O. But if we compactify R2 to a sphere
by adding one extra point O∞, we could define I(O) = O∞ and I(O∞) = O.

An inversion of the plane can be equivalently described as follows. If X ∈ k, then
I(X) = X. If X lies outside k, draw a tangent from X to k and let X2 be the point of
tangency. Drop a perpendicular X2X1 towards the segment OX with X1 ∈ OX, and
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set I(X) = X1. The case when X is inside k, X 6≡ O, is treated in a reverse manner:
erect a perpendicular XX2 to OX, with X2 ∈ k, draw the tangent to k at point X2

and let X1 be the intersection of this tangent with the line OX; we set I(X) = X1.

Properties of Inversion

Some of the basic properties of a plane inversion I(O, r) are summarized below:

• I2 is the identity on the plane.

• If A 6≡ B, and I(A) = A1, I(B) = B1, then 4OAB ∼ 4OB1A1. Consequently,

A1B1 =
AB · r2

OA ·OB
.

• If l is a line with O ∈ l, then I(l) = l.

• If l is a line with O 6∈ l, then I(l) is a circle k1 with diameter OM1, where
M1 = I(M) for the orthogonal projection M of O onto l.

• If k1 is a circle through O, then I(k1) is a line l: reverse the previous construc-
tion.

• If k1(O1, r1) is a circle not passing through O, then I(k1) is a circle k2 defined
as follows: let A and B be the points of intersection of the line OO1 with k1, and let
A1 = I(A) and B1 = I(B); then k2 is the circle with diameter A1B1. Note that the
center O1 of k1 does not map to the center O2 of k2.

Note that two circles are perpendicular if their tangents at a point of intersection
are perpendicular; following the same rule, a line and a circle will be perpendicular if
the line passes through the center of the circle. In general, the angle between a line
and a circle is the angle between the line and the tangent to the circle at a point of
intersection with the line.

• Inversion preserves angles between figures: let F1 and F2 be two figures (lines,
circles); then

∠(F1, F2) = ∠(I(F1), I(F2)).

Problems

(1) Given a point A and two circles k1 and k2, construct a third circle k3 so that
k3 passes through A and is tangent to k1 and k2.

(2) Given two points A and B and a circle k1, construct another circle k2 so that
k2 passes through A and B and is tangent to k1.

(3) Given circles k1, k2 and k3, construct another circle k which tangent to all three
of them.
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(4) Let k be a circle, and let A and B be points on k. Let s and q be any two
circles tangent to k at A and B, respectively, and tangent to each other at M .
Find the set traversed by the point M as s and q move in the plane and still
satisfy the above conditions.

(5) Circles k1, k2, k3 and k4 are positioned in such a way that k1 is tangent to k2

at point A, k2 is tangent to k3 at point B, k3 is tangent to k4 at point C, and
k4 is tangent to k1 at point D. Show that A, B, C and D are either collinear
or concyclic.

(6) Circles k1, k2, k3 and k4 intersect cyclicly pairwise in points {A1, A2}, {B1, B2},
{C1, C2}, and {D1, D2}. (k1 and k2 intersect in A1 and A2, k2 and k3 intersect
in B1 and B2, etc.)

(a) Prove that if A1, B1, C1, D1 are collinear (concyclic), then A2, B2, C2, D2

are also collinear (concyclic).
(b) Prove that if A1, A2, C1, C2 are concyclic, then B1, B2, D1, D2 are also

concyclic.

(7) (Ptolemy’s Theorem) Let ABCD be inscribed in a circle k. Prove that the
sum of the products of the opposite sides equals the product of the diagonals
of ABCD:

AB ·DC + AD ·BC = AC ·BD.

Further, prove that for any four points A, B, C,D: AB · DC + AD · BC ≥
AC ·BD. When is equality achieved?

(8) Let k1 and k2 be two circles, and let P be a point. Construct a circle k0 through
P so that ∠(k1, k0) = α and ∠(k1, k0) = β for some given angles α, β ∈ [0, π).

(9) Given three angles α1, α2, α3 ∈ [0, π) and three circles k1, k2, k3, two of which
do not intersect, construct a fourth circle k so that ∠(k, ki) = αi for i = 1, 2, 3.

(10) Construct a circle k∗ so that it goes through a given point P , touches a given
line l, and intersects a given circle k at a right angle.

(11) Construct a circle k which goes through a point P , and intersects given circles
k1 and k2 at angles 45◦ and 60◦, respectively.

(12) Let ABCD and A1B1C1D1 be two squares oriented in the same direction.
Prove that AA1, BB1 and CC1 are concurrent if D ≡ D1.

(13) Let ABCD be a quadrilateral, and let k1, k2, and k3 be the circles circumscribed
around 4DAC, 4DCB, and 4DBA, respectively. Prove that if AB · CD =
AD ·BC, then k2 and k3 intersect k1 at the same angle.

(14) In the quadrilateral ABCD, set ∠A + ∠C = β.

(a) If β = 90◦, prove that that (AB · CD)2 + (BC · AD)2 = (AC ·BD)2.
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(b) If β = 60◦, prove that (AB · CD)2 + (BC · AD)2 = (AC · BD)2 + AB ·
BC · CD ·DA.

(15) Let k1 and k2 be two circles intersecting at A and B. Let t1 and t2 be the
tangents to k1 and k2 at point A, and let t1 ∩ k2 = {A, C}, t2 ∩ k1 = {A, D}.
If E ∈ AB→ such that AE = 2AB, prove that ACED is concyclic.

(16) Let OL be the inner bisector of ∠POQ. A circle k passes through O and
k ∩OP→ = {A}, k ∩OQ→ = {B}, k ∩OL→ = {C}. Prove that, as k changes,
the following ratio remains constant:

OA + OB

OC
.

(17) Let a circle k∗ be inside a circle k, k∗ ∩ k = ∅. We know that there exists
a sequence of circles k0, k1, ..., kn such that ki touches k, k∗ and ki−1 for i =
1, 2, ..., n + 1 (here kn+1 = k0.) Show that, instead of k1, one can start with
any circle k′1 tangent to both k and k∗, and still be able to fit a “ring” of n
circles as above. What is n is terms of the radii of and the distance between
the centers of k and k∗?

(18) Circles k1, k2, k3 touch pairwise, and all touch a line l. A fourth circle k touches
k1, k2, k3, so that k ∩ l = ∅. Find the distance from the center of k to l given
that radius of k is 1.

2. Radical Axes

Definition 2. The degree of point A with respect to a circle k(O,R) is defined
as

dk(A) = OA2 −R2.

This is simply the square of the tangent segment from A to k. Let M be
the midpoint of AB in 4ABC, and CH – the altitude from C, with H ∈ AB.
Mark the sides BC, CA and AB by a, b and c, respectively. Then

(1) |a2 − b2| = |BH2 − AH2| = c|BH − AH| = 2c ·MH,

where M is the midpoint of AB.

Definition 3. The radical axis of two circles k1 and k2 is the geometric place of
all points which have the same degree with respect to k1 and k2: {A | dk1(A) =
dk2(A)}.

Let P be one of the points on the radical axis of k1(O1, R1) and k2(O2, R2).
We have by (1):

PO2
1 −R2

1 = PO2
2 −R2

2 ⇒ |R2
1 −R2

2| = |PO2
1 − PO2

2| = 2O1O2 ·MH,
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where M is the midpoint of O1O2, and H is the orthogonal projection of P
onto O1O2. Then

MH =
|R2

1 −R2
2|

2O1O2

= constant ⇒ point H is constant.

(Show that the direction of MH→ is the same regardless of which point P on
the radical axis we have chosen.) Thus, the radical axis is a subset of a line
⊥ O1O2. The converse is easy.

Lemma 1. Let k1(O1, R1) and k2(O2, R2) be two nonconcentric circles circles,
with R1 ≥ R2, and let M be the midpoint of O1O2. Let H lie on the segment
MO2, so that

HM = (R2
1 −R2

2)/2O1O2.

Then the radical axis of k1(O1, R1) and k2(O2, R2) is the line l, perpendicular
to O1O2 and passing through H.

What happens with the radical axis when the circles are concentric? In
some situations it is convenient to have the circles concentric. In the following
fundamental lemma, we achieve this by applying both ideas of inversion and
radical axis.

Lemma 2. Let k1 and k2 be two nonintersecting circles. Prove that there exists
an inversion sending the two circles into concentric ones.

Proof: If the radical axis intersects O1O2 in point H, let k(H, dki
(H)) inter-

sect O1O2 in A and B. Apply inversion wrt k′(A, AB). Then I(k) is a line l
through B, l ⊥ O1O2. But k1 ⊥ k, hence I(k1) ⊥ l, i.e. the center of I(k1)
lies on l. It also lies on O1O2, hence I(k1) is centered at B. Similarly, I(k2) is
centered at B. �

Problems

(19) The radical axis of two intersecting circles passes through their points of inter-
section.

(20) The radical axes of three circles intersect in one point, provided their centers
do not lie on a line.

(21) Given two circles k1 and k2, find the geometric place the centers of the circles
k perpendicular to both k1 and k2.
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(22) A circle k is tangent to a line l at a point P . Let O be diametrically opposite
to P on k. For some points T, S ∈ k set OT ∩ l = T1 and OS ∩ l = S1. Finally,
let SQ and TQ be two tangents to k meeting in point Q. Set OQ ∩ l = {Q1}.
Prove that Q1 is the midpoint of T1S1.

(23) Consider 4ABC and its circumscribed and inscribed circles K and k, respec-
tively. Take an arbitrary point A1 on K, draw through A1 a tangent line to
k and let it intersect K in point B1. Now draw through B1 another tangent
line to k and let it intersect K in point C1. Finally, draw through C1 a third
tangent line to k and let it intersect K in point D1. Prove that D1 coincides
with A1. In other words, prove that any triangle A1B1C1 inscribed in K, two
of whose sides are tangent to k, must have its third side also tangent to k so
that k is the inscribed circle for 4A1B1C1 too.

(24) Find the distance between the center P of the inscribed circle and the center
O of the circumscribed circle of 4ABC in terms of the two radii r and R.

(25) We are given 4ABC and points D ∈ AC and E ∈ BC such that DE||AB. A
circle k1 of diameter DB intersects a circle k2 of diameter AE in M and N .
Prove that M and N lie on the altitude CH to AB.

(26) Prove that the altitude of 4ABC through C is the radical axis of the circles
with diameters the medians AM and BN of 4ABC.

(27) Find the geometric place of points O which are centers of circles through the
end points of diameters of two fixed circles k1 and k2.

(28) Construct all radical axes of the four incircles of 4ABC.

(29) Let A, B, C be three collinear points with B inside AC. On one side of AC
we draw three semicircles k1, k2 and k3 with diameters AC, AB and BC,
respectively. Let BE be the interior tangent between k2 and k3 (E ∈ k1), and
let UV be the exterior tangent to k2 and k3 (U ∈ k2 and V ∈ k3). Find the
ratio of the areas of 4UV E and 4ACE in terms of k2 and k3’s radii.

(30) The chord AB separates a circle γ into two parts. Circle γ1 of radius r1 is
inscribed in one of the parts and it touches AB at its midpoint C. Circle γ2

of radius r2 is also inscribed in the same part of γ so that it touches AB, γ1

and γ. Let PQ be the interior tangent of γ1 and γ2, with P, Q ∈ γ. Show that
PQ · SE = SP · SQ, where S = γ1 ∩ γ2 and E = AB ∩ PQ.

(31) Let k1(O, R) be the circumscribed circle around 4ABC, and let k2(T, r) be
the inscribed circle in 4ABC. Let k3(T, r1) be a circle such that there exists a
quadrilateral AB1C1D1 inscribed in k1 and circumscribed around k3. Calculate
r1 in terms of R and r.
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(32) Let ABCD be a square, and let l be a line such that the reflection A1 of A
across l lie on the segment BC. Let D1 be the reflection of D across l, and
let D1A1 intersect DC in point P . Finally, let k1 be the circle of radius r1

inscribed in 4A1CP1. Prove that r1 = D1P1.

(33) In a circle k(O,R) let AB be a chord, and let k1 be a circle touching internally
k at point K so that KO ⊥ AB. Let a circle k2 move in the region defined by
AB and not containing k1 so that it touches both AB and k. Prove that the
tangent distance between k1 and k2 is constant.

(34) Prove that for any two circles there exists an inversion which transforms them
into congruent circles (of the same radii). Prove further that for any three cir-
cles there exists an inversion which transforms them into circles with collinear
centers.

(35) Given two nonintersecting circles k1 and k2, show that all circles orthogonal to
both of them pass through two fixed points and are tangent pairwise.

(36) Given two circles k1 and k2 intersecting at points A and B, show that there
exist exactly two points in the plane through which there passes no circle
orthogonal to k1 and k2.

(37) (Brianchon) If the hexagon ABCDEF is circumscribed around a circle, prove
that its three diagonals AD, BE and CF are concurrent.

3. Power of a Point wrt a Circle and a Sphere

In the following, we consider 4ABC and its circumcircle k with center O, and
calculate degrees of distinguished points of 4ABC wrt k.

(38) Find the degrees of the medicenter G, orthocenter H and incenter I of 4ABC
wrt k. Deduce Euler’s formula OI2 = R2 − 2Rr.

(39) Let A and B lie on the circle k. Find the points on line AB whose degree wrt
k equals t2, where t is the length of a given segment.

(40) Let A and B lie on the circle k. Find the points M for which MA·MB = MT 2,
where MT is the tangent from M to k.

(41) From a given point A outside circle k with center O draw a line l and denote
its intersection points with k by B and C. Draw the tangents at B and C to
k and let them intersect at M . Find the locus of points M as line l moves.
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(42) Let the medians AM , BN and CP intersect each other in G and intersect the
circumcircle k of 4ABC in points A1, B1 and C1. Prove that

AG

GA1

+
BG

GB1

+
CG

GC1

= 3.

(43) 4ABC is inscribed in circle k(O, R). Find the locus of points Q inside k for
which

AQ

QQ1

+
BQ

QQ2

+
CQ

QQ3

= 3

where Q1 = k ∩ AQ, Q2 = k ∩BQ, Q3 = k ∩ CQ.

(44) Let A be a point inside circle k. Consider all chords MN in k such that
∠MAN = 90◦. For each such chord construct point P symmetric to A wrt
MN . Find the locus of all such points P .

(45) Given non–colinear points A, B, C, find point P on line AB for which PC2 =
PA · PB.

(46) Given points A, B, M and segment m, construct a circle through A and B
such that the tangents from M to k are equal to m.

(47) Given points A, B, C and segments m and n, construct a circle k through A
such that the tangents to k through B and C are equal to m and n, respectively.

(48) Given poins A and B and line l which intersects AB, construct a cicrle through
A and B cutting a chord from line l of given length d.

(49) Through two given points A and B construct a circle which is tangent to a line
p.

(50) On the side AC of 4ABC fix point M . Find point X on the side BC whose
distance to M equals the sum of the distances from M and X to AB.

(51) Construct a circle k passing through two given points A and B and tangent to
a given circle k.

(52) Construct a circle k through two given points A and B and cutting a chord
from k of given length d.

(53) Construct a circle through a given point and tangent to a given line and a
given circle.

(54) Construct a circle through a given point and tangent to two given circles.

(55) Let a circle k and a point A be given. Through two arbitrary points B and C
on k and through A draw a circle k′. Let M be the intersection point of line
BC with the tangent to k′ at A. Find the locus of points M .

(56) Find the locus of points with equal degrees wrt two given circles.
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(57) Given circles k1(O1, R1) and k2(O2, R2), construct a point the tangents through
which to k1 and k2 are equal and it lies on a given line (or on a given circle).

(58) Given circles k1(O1, R1) and k2(O2, R2), and angle α, construct a point P the
tangents through which to k1 and k2 are equal and ∠O1PA2 = α.

(59) Given three circles whose centers are non–collinear, find the locus of points
which have equal degrees wrt to the three circles.

(60) Points A, B, C and D lie on a given line l. Find the locus of points P for
which the circles through A, B, P , and through C, D, P are tangent at P .

4. Problems From Around the World

(61) (IMO Proposal) The incircle of 4ABC touches BC, CA, AB at D, E, F , re-
spectively. X is a point inside 4ABC such that the incircle of 4XBC touches
BC at D also, touches CX and XB at Y and Z, respectively. Prove that
EFZY is a cyclic quadrilateral.

(62) (Israel, 1995) Let PQ be the diameter of semicircle H. Circle k is internally
tangent to H and tangent to PQ at C. Let A be a point on H and B a point
on PQ such that AB is perpendicular to PQ and is also tangent to k. Prove
that AC bisects ∠PAB.

(63) (Romania, 1997) Let ABC be a triangle, D a point on side BC, and ω the
circumcicle of ABC. Show that the circles tangent to ω, AD, BD and to ω,
AD, DC are also tangent to each other if and only if ∠BAD = ∠CAD.

(64) (Russia, 1995) We are given a semicircle with diameter AB and center O,
and a line which intersects the semicircle at C and D and line AB at M
(MB < MA, MD < MC.) Let K be the second point of intersection of the
circumcircles of 4AOC and 4DOB. Prove that ∠MKO = 90◦.

(65) (Ganchev, 265) We are given nonintersecting circle k and line g, and two
circles k1 and k2 which are tangent externally at T , and each is tangent to g
and (externally) to k. Find the locus of points T .

(66) (Ganchev, 266) We are given two nonintersecting circles k and K, and two cir-
cles k1 and k2 which are tangent externally at T , and each is tangent externally
to k and K. Find the locus of points T .

(67) (95,4,p.31) Let A be a point outside circle k with center O, and let AP be a
tangent from A to k (P ∈ k). Let B denote the foot of the perpendicular from
P to line OA. Choose an arbitrary chord CD in k passing through B, and let
E be the reflection of D across AO. Prove that A, C and E are collinear.
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(68) (IMO’95) Let A, B, C and D be four distinct points on a line, positioned in
this order. The circles k1 and k2 with diameters AC and BD intersect in X
and Y . Lines XY and BC intersect in Z. Let P be a point on line XY ,
P 6= Z. Line CP intersects k1 in C and M , and line BP intersects k2 in B
and N . Prove that lines AM , DN and XY are concurrent.

(69) (BO’95 IV) Let 4ABC have half–perimeter p. On the line AB take points
E and F such that CE = CF = p. Prove that the externally inscribed for
4ABC circle tangent to side AB is tangent to the circumcircle of 4EFC.

(70) (BQ’95) Three circles k1, k2 and k3 intersect as follows: k1 ∩ k2 = {A, D},
k1∩k3 = {B, E}, k2∩k3 = {C, F}, so that ABCDEF is a non-selfintersecting
hexagon. Prove that AB · CD · EF = BC ·DE · FA.

(71) (IMO’94, shortlisted) Circles ω, ω1 and ω2 are externally tangent to each other
in points C = ω∩ω1, E = ω1∩ω2 and D = ω2∩ω. Two parallel lines l1 and l2
are tangent to ω, ω1, and ω, ω2 at points R, A, and S, B, respectively. Prove
that the intersection point of AD and BC is the circumcenter of 4CDE.

(72) (Kazanluk’97 X) Point F on the base AB of trapezoid ABCD is such that
DF = CF . Let E be the intersection point of the diagonals AC and BD, and
O1 and O2 be the circumcenters of 4ADF and 4BCF , respectively. Prove
that the lines FE and O1O2 are perpendicular.

5. Variations on Sylvester’s Theorem

(73) (a) (Sylvester, 1893) Let R be a finite set of points in the plane satisfying the
following condition: on every line determined by two points in R there
lies at least one other point in R. Prove that all points in R lie on a single
line.

(b) Let R be a finite set of points in space satisfying the following condition:
on every plane determined by three noncollinear points in R there lies at
least one other point in R. Prove that all points in R lie on a single plane.

(74) (a) Let S be a finite set of points in the plane, no three collinear. It is known
that on the circle determined by any three points in S there lies a fourth
point in S. Prove that all points in S lie on a single circle.

(b) Let S be a finite set of points in the plane, no four coplanar. It is known
that on the sphere determined by any four points in S there lies a fifth
point in S. Prove that all points in S lie on a single sphere.

(75) (a) Let T be a finite set of lines in the plane, no two parallel, satisfying the
following condition: through the intersection point of any two lines in T
there passes a third line in T . Prove that all lines in T pass through a
single point.
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(b) Let T be a finite set of planes in space, no two parallel, satisfying the
following condition: through the intersection line of any two planes in T
there passes a third plane in T . Prove that all planes in T pass through a
some fixed line.

(76) (a) Let Q be a set of n points in the plane. If the total number of lines
determined by the points in Q is less than n, prove that all points in Q
lie on a single line.

(b) Conversely, let Q be a set of n points in the plane, not all collinear and
not all concyclic. Prove that through every point in Q there pass at least
n − 1 circles of Q. (A circle of Q is a line or a circle through 3 points in
Q.)
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