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1 Quick Outline

A recurrence relation gives the values of a sequence in terms of its previous
values; a functional equation gives values of a function in terms of other values
of the function. (Note: a sequence is a function, too! Recurrence relations
are a special kind of functional equation.)

Usually, the goal is to find a closed form expression for the sequence or
function; sometimes you want to find a specific value; occasionally, there’s
something else to do.

Working with recurrence relations often involves induction in some form,
though it is frequently possible to find closed form solutions without directly
using induction.

Many situations can be recast in terms of a recurrence relation or func-
tional equation. This is especially true of combinatorial problems.

2 Easy illustrative examples

2.1 (AHSME 1999, #13) Define a sequence of real numbers ay, as, as, . ..
by a; = 1 and a,, = 99a} for all n > 1. Then aigy equals? The original
problem was multiple choice.

2.2 (AHSME 1999, #20) The sequence ay, as, as, . .. satisfies a; = 19, ag =
99. and for all n > 3, a,, is the arithmetic mean of the first n — 1 terms. Find
as. The original problem was multiple choice.

2.3 (AHSME 1998, #17) Let f(x) be a function with the two properties:
(a) for any two real numbers x and y, f(z +y) =z + f(y), and
(b) f(0) = 2.

What is the value of f(1998)7 The original problem was multiple choice.

2.4 (AHSME 1997, #27) Consider those functions f that satisfy f(z+4)+
f(z —4) = f(x) for all real x. Any such function is periodic and there is a
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least common positive period p for all of them. Find p. The original problem
was multiple choice.

2.5 (Common idea) The probability a team wins its next game is .75 if it
won its last game and .25 if it lost its last game. What’s the probability a
team that wins game 1 will win game 107

2.6 (Common) Into how many pieces can a pizza be divided by n straight
vertical cuts? (Assume the pizza is essentially 2-dimensional also convex.
And no moving the pieces around between the cuts.)

2.7 (Variations of the pizza problem)

1. Into how many pieces can a cake be cut with n straight cuts (not
necessarily vertical! The point is that the cake has thickness, so now
the shape is 3-dimensional and the cuts are not lines, but planes!)

2. Go back to the essentially two-dimensional pizza but now assume the
cuts are not straight lines, but V-shaped (that is, a cut is made with a
“wedger” — starting from a point, it generates two rays). How many

3. Go back to the two-dimensional pizza and n straight line cuts, but now
count the maximum number of pieces that don’t have any of the crust
on the boundary.

3 Basic examples, famous examples
® a1 =a,+k (Soa,=a +(k—1)n)
e tpi1=a,+n (Soa,=a1+14+2+...+(n—1)=a; +n(n—1)/2)
® Gpi1 =0y -k (a, =ak™ )
® G, 1 =a, n (a, =a(n— 1)

e Fibonacci sequence: a,11 = ap, + a, 1 (for n > 2), a; = ag = 1 (Closed
form? various ways to express it. Discussed at the board.)

e Fibonacci variants (Discussed on the board).



e Cauchy equation: f(z+y) = f(x)+ f(y). (f(x) = f(1)-x, for rational
x. If f is defined on the reals, and is continuous, then f(x) = f(1)-x ev-
erywhere). There are variants of this equation involving multiplication
instead of addition. ..

e Josephus Problem: n rebels (let’s say n = 41 for simplicity) are trapped
by the Romans and decide to kill themselves rather than be captured.
They form a circle and go around it, killing every other person until
one is left, who must commit suicide. As the lone spy in the group,
you'd like to position yourself to be the one person left. What position
do you stand in? (Note: in the original story, the 41 rebels killed every
third person and Josephus found the right places for himself and an
accomplice to stand in order to be the last two people left).

4 Basic methods of solution
(This will be expanded in later sections)

e Guess the answer, prove it by induction

try special values, like 0 or 1

try to fit to most common patterns (listed above)
e try geometric series solutions or polynomials (when appropriate)

Finding simple solutions that generate all possible solutions. (“reper-
toire” method). This is particularly appropriate when the sum of two
distinct solutions is another solution, or when solutions multiplied by
a constant form another solution.

5 Fairly common types of problems

5.8 (AIME 1996) A bored student walks down a hall that contains a row
of closed lockers, numbered 1 to 1024. He opens the locker numbered 1, and
then alternates between skipping and opening each closed locker thereafter.
When he reaches the end of the hall, the student turns around and starts



back. He opens the first closed locker he encounters, then alternates between
skipping and opening each closed locker thereafter. The student continues
wandering back and forth in this manner until every locker is open. What is
the number of the last locker he opens?

5.9 (AIME 1994) The function f has the property that, for each real number
x?

fl@)+ fle—1)=a".
If f(19) = 94, what is the remainder when f(94) is divided by 10007

5.10 (AIME 1993) Let Py(x) = 2* + 313z> — 77z — 8. For integers n > 1,
define P,(x) = P, 1(x — n). What is the coefficient of x in Pyy(z)?

5.11 (AIME 1992) For any sequence of real numbers A = (ay, a9, as, .. .),
define AA to be the sequence (ay — al, a3 — as,aq — as, ...), whose nth term
iS ap41 — an. Suppose that all of the terms of the sequence A(AA) are 1 and
that a;g = ags = 0. Find q;.

5.12 (British Math Olympiad, 1977, #1) A non-negative integer f(n) is
assigned to each positive integer n in such a way that the following conditions
are satisfied:

(a) f(mn) = f(m)+ f(n), for all positive integers m, and n ;
(b) f(n) = 0 whenever the units digit of n (in base 10) is a ‘3’; and
(©) £(10) =0,

Prove that f(n) = 0, for all positive integers n.

5.13 (Putnam, 1999, problem A-1) Find polynomials f(z), g(x), and h(z),
if they exist, such that, for all x:

-1 ifr<—1
lf(z)] = |g(x)| +h(z) =4 3z+2 f-1<2<0
—2x+2 ifz>0

POLYA...



6 Summation and recurrence

A summation S,, = >_;_; a; can be thought of as a recurrence relation, since
Sy = a; and S, = S, + a,41. Consequently, the same ideas used to find
closed forms for recurrences may help find closed forms for sums (and vice
versa).

Note some additional techniques useful for sums: perturbation method
(splitting a term off the sum and rewriting it)

Some examples:

LY (—1)kk?

2.3 k-2k

7 Some deeper ideas

Difference operator A (already mentioned in a problem above) is very useful
when dealing with sequences, especially those that come from polynomials.
Think about A(z™); but is is especially useful to look at falling powers,
that is:
™ =z(x—1)---(zr —m+1)

(Rising powers are similarly defined, 2™ = x(z +1)--- (z +m — 1), but we
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won’t use them here.) Also consider the polynomial (:l) =

What is A(2)? What is A((2))? What is Af(zm)? AF((2))?
The polynomial (;) is 0 forx =0,1,...,m — 1 and 1 for x = m, so it

is easy to see how its succession of finite differences will look. This gives a
way to resurrect any polynomial from the difference sequence. (This is an
example of the repertoire method).

This approach also gives a nice proof of the recurrence relation:

pla+n) = @m tn—1) - (Z)p(x Fn—2) 4.+ (=) p(a)

for any polynomial of degree less than n.



8 Various Problems

Some of these are quite difficult! I can’t guarantee that they are in order of
difficulty; in fact, I'm rather sure they aren’t. We'll go over some in class,we
may have hints for some of the others. Within reason, I'm happy to discuss
some of these in email, as well.

8.14 (Manhattan (KKansas) Math Olympiad 1999) In the sequence 1,1,2,3,7,22,155,3411, . ..
every term is equal to the product of the previous two terms plus 1. Prove
that there are no terms in the sequence which are divisible by 4.

8.15 (Leningrad Math Olympiad 1988 Grade 10 Main Round) The functions
f(z) and g(z) are defined on the real axis so that they satisfy the following
condition: for any real numbers z and y, f(z + g(y)) = 2z +y + 5. Find an
explicit expression for the function g(z + f(y)).

8.16 (Leningrad Math Olympiad 1987 Grade 10 Elimination Round) The
continuous functions f, g: [0, 1] — [0, 1] satisfy the following condition f(g(z)) =
g(f(x)) for every x € [0,1]. It is known that f is an increasing function.
Prove that there exists an a € [0, 1] such that f(a) = g(a) = a.

8.17 (Leningrad Math Olympiad 1987 Grade 9 Elimination Round) Let (A,,)
be a sequence of natural numbers such that A; < 1999 and A; + A;11 = A;19
for any natural number i. Prove that if A; — A, and A, + A,,_; are divisible
by 1999, then n is odd.

8.18 (Leningrad Math Olympiad 1988 Grade 10 Elimination Round) The
function F: R — R is continuous and F(x) - F(F(z)) =1 for all real z. Tt is
known that F'(1000) = 999. Find F(500).

8.19 (Leningrad Math Olympiad 1990 Grade 11 Elimination Round) A
continuous function f:R — R satisifes equality f(xz + f(z)) = f(z) for all
real . Prove that f is constant.

8.20 (Leningrad Math Olympiad 1991 Grades 9-10 Elimination Round)
Does there exist a function F:IN — N such that for any natural number x,

F(F(F(--F(z)--))) =2 +17

Here F is applied F'(x) times.

8.21 (Leningrad Math Olympiad 1989 Grade 9 Elimination Round) A se-
quence of real numbers ay, as, as, ... has the property that ax,; = (kay +
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1)/(k — ax) for any natural number k. Prove that this sequence contains
infinitely many postitive terms and infinitely many negative terms.

8.22 (Leningrad Math Olympiad 1989 Grade 10 Elimination Round) A
sequence of real numbers ay, a9, as,... has the property that |a,, + a, —
Amin| < 1/(m+n) for all m and n. Prove that this sequence is an arithmetic
progression.

8.23 (Leningrad Math Olympiad 1991 Grade 11 Elimination Round) The
finite sequence aq,as,as, ..., a, is called p-balanced if any sum of the form
ag + Qgyp + Ggyop + - - - is the same for any k£ = 1,2,...,p. Prove that if a
sequence with 50 members is p — balanced for p = 3,5,7,11,13,17, then all
its members are equal to 0.

8.24 (Int. Math Olympiad 1977) Let f(n) be a function defined on the set
of all positive integers and having all its values in the same set. Prove that
if f(n+1)> f(f(n)) for each positive integer n, then f(n) = n for each n.

8.25 (Int. Math Olympiad 1976). A sequence {u,} is defined by uy = 2,
= 5/2, Upy1 = uy(u? | —2) —uy for n =1,2,.... Prove that for positive
integers n,

[un] — 9l2"=(=1)"1/3

where [z] denotes the greatest integer less than or equal to .

8.26 (Bratislava Correspondence Seminar, Fall 1999 3rd series): Find all
functions f: R — R that satisfy: zf(x) + f(1 — 2) = 2° — z for all real .

8.27 (Bratislava Correspondence Seminar, Fall 1999 3rd series): Let fi, fa, f3, . ..

be the elements of the Fibonacci sequence (that is, f1 = fo = 1 and f,,9 =
Jni1 + fn for all positive integers n). Prove that if P(z) is a a polyno-
mial of degree 998 for which P(k) = f, for £k = 1000,1001,...,1998, then
P(1999) = fig99 — 1.

8.28 (Bratislava Correspondence Seminar, Fall 1998 3rd series): For a func-
tion f:Z — R, the following statement is true:

] z—10 for z > 100
f(z) = f(f(z+11)) for z <11

Prove that for all z < 100, f(z) = 91.
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8.29 (Bratislava Correspondence Seminar, Fall 1998 3rd series  but I
sure this problem is not original): f: R — R is continuous and f(f(f(z))) =
x for all real z. Prove that f(z) = z for all real z.

=

8.30 (British Math Olympiad 1999). Any positive integer m can be written
uniquely in base 3 as a string of 0s, 1s, and 2s (not beginning with a zero).
For example:

98 = (1-81) 4+ (0-27) 4+ (1-9) + (2-3) + (2- 1) = (10122)5.

Let ¢(m) denote the sum of the cubes of the digits of the base 3 form of m;
thus, for instance ¢(98) = 13 4+ 0% + 1% + 23 + 2% = 18. For any fixed positive
integer n, define the sequence (u,) by:

uy =n and u, = c(u, 1) forr >2

Show there is a positive integer r for which u, is in the set {1,2,17}.

8.31 (British Math Olympiad 1999) Consider all functions f from the pos-
itive integers to the positive integers such that:

(i) for each positive integer m there is a unique positive integer n such that

f(n) =m.

(ii) for each positive integer n, we have either f(n + 1) is either 4f(n) — 1
or f(n)—1.
Find the set of positive integers p such that f(1999) = p for some function
f with properties (i) and (ii).
8.32 (Putnam, 1999, problem A-6) The sequence (a,),>1 is defined by

a; =1, as = 2, az = 24, and for n > 4,

2 2
6ar_an_3 — 8a,_1a,_,
a, = .

Ap—20n—3
Show that, for all n, a, is an integer multiple of n.

8.33 (Putnam 1990) Let Ty = 2, T} = 3, Ty = 6 and for n > 3,

Tn = (’I’I, + 4)Tn71 — 47’I,Tn,2 + (477, — 8)Tn,3 .



The first few terms are 2, 3, 6, 14, 40, 152, 784, 5158, 40576, 363392. Find,
with proof, a formula for 7, of the form T, = A, + B,, where {4, } and {B,}
are well-known sequences.

8.34 (Putnam 1980) For which real numbers a does the sequence defined by
the initial condition ug = a and the recursion u,; = 2u, — n? have u, > 0
for all n > 07

8.35 (USAMO 1993) Consider functions f:[0,1] — R which satisfy:

1. f(z) > 0 for all z in [0, 1],

2. f(1) =1,
3. f(z)+ f(y) < f(z +y) whenever z, y, and = + y are all in [0, 1].

Find, with proof, the smallest constant ¢ such that f(z) < cx for every
function f satisfying the three conditions and every z in [0, 1].

8.36 (USAMO 1993) Let a, b be odd positive integers. Define the sequence
fn by putting f; = a, fo = b, and by letting f,, for n > 3 be the greatest odd
divisor of f,_1 + f._2. Show that f, is constant for n sufficiently large and
determine the eventual value as a function of a and b.

8.37 (India, 1998) Let N be a positive integer such that N 4 1 is prime.
Choose a; from {0,1} for i = 0,..., N. Suppose that the a; are not all equal,
and let f(z) be a polynomial such that f(i) = a; for i = 0,..., N. Prove
that the degree of f(x) is at least N.

9 (From the 1995 Polya Team Mathematics
Competition)

it will be convenient for us to list the sequences in this round with initial
index 0: that is, each sequence listed here should be considered to be of the
form: ag,ay,as,as, ...

(1) The sequence 1,1,7,13,55,133,...is an example of a sequence that sat-
isfies the recurrence relation

Qp = Gp_1 + 6a,_o forall n > 2.



(a) Find all geometric sequences ag, aj, as, ... that

(i) satisfy the same recurrence relation a,, = a,_1 + 6a, 5 for all
n > 2.

(ii) have the first term ag equal to 1.
(b) For the sequence 1,1,7,13,55,133,... listed above, find a closed
form expression for the 101% term ajoo (that is, an expression

involving only simple sums, products, and exponentials, without
the use of 3 notation or indices).

(c) Prove that there is only one sequence of real numbers satisfying
this recurrence relation with both an infinite number of positive
terms and an infinite number of negative terms

(2) The sequence 0,1,4,9,16,25,...,n% ...is an example of a sequence that
satisfies the recurrence relation

a, = 3a, 1 — 3a, 9+ a, 3 foralln>3.

(a) Find all geometric sequences ag, aq, as, as, aq, . .. that

(i) satisfy the same recurrence relation a,, = 3a,,_1 — 3a,_2+a,_3
for all n > 3.

(ii) have the first term aq equal to 1.

(b) For the general sequence ag, a, as, as, . . . satisfying the recurrence
relation, find a closed form expression for a;gg in terms of ag, aq,
and as.

(¢) Prove that there are no sequences of real numbers satisfying the
recurrence relation with both an infinite number of positive terms
and an infinite number of negative terms

(3) Prove that the sequence given by ag = 2 and, for n > 1,
a, = The integer closest to (5 + 2v/7)"

satisfies a recurrence relation of the form a, = x - a,_1 + y - a,_o for
n > 2. (For partial credit, find the values for z and y.)
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