
Functional Equations & Recurrence RelationsBerkeley Math Circle Ted AlperJanuary 23, 2005 Ted.Alper@stanford.edu1 Quick OutlineA recurrence relation gives the values of a sequence in terms of its previousvalues; a functional equation gives values of a function in terms of other valuesof the function. (Note: a sequence is a function, too! Recurrence relationsare a special kind of functional equation.)Usually, the goal is to �nd a closed form expression for the sequence orfunction; sometimes you want to �nd a speci�c value; occasionally, there'ssomething else to do.Working with recurrence relations often involves induction in some form,though it is frequently possible to �nd closed form solutions without directlyusing induction.Many situations can be recast in terms of a recurrence relation or func-tional equation. This is especially true of combinatorial problems.2 Easy illustrative examples2.1 (AHSME 1999, #13) De�ne a sequence of real numbers a1; a2; a3; : : :by a1 = 1 and a3n+1 = 99a3n for all n � 1. Then a100 equals? The originalproblem was multiple choice.2.2 (AHSME 1999, #20) The sequence a1; a2; a3; : : : satis�es a1 = 19, a9 =99, and for all n � 3, an is the arithmetic mean of the �rst n�1 terms. Finda2. The original problem was multiple choice.2.3 (AHSME 1998, #17) Let f(x) be a function with the two properties:(a) for any two real numbers x and y, f(x+ y) = x + f(y), and(b) f(0) = 2.What is the value of f(1998)? The original problem was multiple choice.2.4 (AHSME 1997, #27) Consider those functions f that satisfy f(x+4)+f(x � 4) = f(x) for all real x. Any such function is periodic and there is a1



least common positive period p for all of them. Find p. The original problemwas multiple choice.2.5 (Common idea) The probability a team wins its next game is .75 if itwon its last game and .25 if it lost its last game. What's the probability ateam that wins game 1 will win game 10?2.6 (Common) Into how many pieces can a pizza be divided by n straightvertical cuts? (Assume the pizza is essentially 2-dimensional { also convex.And no moving the pieces around between the cuts.)2.7 (Variations of the pizza problem)1. Into how many pieces can a cake be cut with n straight cuts (notnecessarily vertical! The point is that the cake has thickness, so nowthe shape is 3-dimensional and the cuts are not lines, but planes!)2. Go back to the essentially two-dimensional pizza { but now assume thecuts are not straight lines, but V-shaped (that is, a cut is made with a\wedger" { starting from a point, it generates two rays). How many3. Go back to the two-dimensional pizza and n straight line cuts, but nowcount the maximum number of pieces that don't have any of the cruston the boundary.3 Basic examples, famous examples� an+1 = an + k (So an = a1 + (k � 1)n)� an+1 = an + n (So an = a1 + 1 + 2 + : : :+ (n� 1) = a1 + n(n� 1)=2)� an+1 = an � k (an = a1kn�1)� an+1 = an � n (an = a1(n� 1)!)� Fibonacci sequence: an+1 = an+ an�1 (for n � 2), a1 = a2 = 1 (Closedform? various ways to express it. Discussed at the board.)� Fibonacci variants (Discussed on the board).2



� Cauchy equation: f(x+ y) = f(x)+ f(y). (f(x) = f(1) �x, for rationalx. If f is de�ned on the reals, and is continuous, then f(x) = f(1)�x ev-erywhere). There are variants of this equation involving multiplicationinstead of addition. . .� Josephus Problem: n rebels (let's say n = 41 for simplicity) are trappedby the Romans and decide to kill themselves rather than be captured.They form a circle and go around it, killing every other person untilone is left, who must commit suicide. As the lone spy in the group,you'd like to position yourself to be the one person left. What positiondo you stand in? (Note: in the original story, the 41 rebels killed everythird person and Josephus found the right places for himself and anaccomplice to stand in order to be the last two people left).4 Basic methods of solution(This will be expanded in later sections)� Guess the answer, prove it by induction� try special values, like 0 or 1� try to �t to most common patterns (listed above)� try geometric series solutions or polynomials (when appropriate)� Finding simple solutions that generate all possible solutions. (\reper-toire" method). This is particularly appropriate when the sum of twodistinct solutions is another solution, or when solutions multiplied bya constant form another solution.5 Fairly common types of problems5.8 (AIME 1996) A bored student walks down a hall that contains a rowof closed lockers, numbered 1 to 1024. He opens the locker numbered 1, andthen alternates between skipping and opening each closed locker thereafter.When he reaches the end of the hall, the student turns around and starts3



back. He opens the �rst closed locker he encounters, then alternates betweenskipping and opening each closed locker thereafter. The student continueswandering back and forth in this manner until every locker is open. What isthe number of the last locker he opens?5.9 (AIME 1994) The function f has the property that, for each real numberx, f(x) + f(x� 1) = x2 :If f(19) = 94, what is the remainder when f(94) is divided by 1000?5.10 (AIME 1993) Let P0(x) = x3 + 313x2 � 77x � 8 : For integers n � 1,de�ne Pn(x) = Pn�1(x� n). What is the coe�cient of x in P20(x)?5.11 (AIME 1992) For any sequence of real numbers A = (a1; a2; a3; : : :),de�ne �A to be the sequence (a2 � a1; a3 � a2; a4 � a3; : : :), whose nth termis an+1� an. Suppose that all of the terms of the sequence �(�A) are 1 andthat a19 = a92 = 0. Find a1.5.12 (British Math Olympiad, 1977, #1) A non-negative integer f(n) isassigned to each positive integer n in such a way that the following conditionsare satis�ed:(a) f(mn) = f(m) + f(n), for all positive integers m, and n ;(b) f(n) = 0 whenever the units digit of n (in base 10) is a `3'; and(c) f(10) = 0.Prove that f(n) = 0, for all positive integers n.5.13 (Putnam, 1999, problem A-1) Find polynomials f(x), g(x), and h(x),if they exist, such that, for all x:jf(x)j � jg(x)j+ h(x) = 8><>: �1 if x < �13x+ 2 if �1 � x � 0�2x+ 2 if x > 0POLYA...
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6 Summation and recurrenceA summation Sn = Pnk=1 ak can be thought of as a recurrence relation, sinceS1 = a1 and Sn+1 = Sn + an+1. Consequently, the same ideas used to �ndclosed forms for recurrences may help �nd closed forms for sums (and viceversa).Note some additional techniques useful for sums: perturbation method(splitting a term o� the sum and rewriting it)Some examples:1. Pnk=1(�1)kk22. Pnk=1 k � 2k7 Some deeper ideasDi�erence operator � (already mentioned in a problem above) is very usefulwhen dealing with sequences, especially those that come from polynomials.Think about �(xn); but is is especially useful to look at falling powers,that is: xm = x(x� 1) � � � (x�m + 1)(Rising powers are similarly de�ned, xm = x(x + 1) � � � (x +m � 1), but wewon't use them here.) Also consider the polynomial �xm� = xmm! .What is �(xm)? What is �(�xm�)? What is �k(xm)? �k(�xm�)?The polynomial �xm� is 0 for x = 0; 1; : : : ; m � 1 and 1 for x = m, so itis easy to see how its succession of �nite di�erences will look. This gives away to resurrect any polynomial from the di�erence sequence. (This is anexample of the repertoire method).This approach also gives a nice proof of the recurrence relation:p(x+ n) =  n1!p(x+ n� 1)�  n2!p(x + n� 2) + : : :+ (�1)n�1p(x)for any polynomial of degree less than n.
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8 Various ProblemsSome of these are quite di�cult! I can't guarantee that they are in order ofdi�culty; in fact, I'm rather sure they aren't. We'll go over some in class,wemay have hints for some of the others. Within reason, I'm happy to discusssome of these in email, as well.8.14 (Manhattan (Kansas) Math Olympiad 1999) In the sequence 1; 1; 2; 3; 7; 22; 155; 3411; : : :every term is equal to the product of the previous two terms plus 1. Provethat there are no terms in the sequence which are divisible by 4.8.15 (Leningrad Math Olympiad 1988 Grade 10 Main Round) The functionsf(x) and g(x) are de�ned on the real axis so that they satisfy the followingcondition: for any real numbers x and y, f(x + g(y)) = 2x+ y + 5. Find anexplicit expression for the function g(x+ f(y)).8.16 (Leningrad Math Olympiad 1987 Grade 10 Elimination Round) Thecontinuous functions f; g: [0; 1]! [0; 1] satisfy the following condition f(g(x)) =g(f(x)) for every x 2 [0; 1]. It is known that f is an increasing function.Prove that there exists an a 2 [0; 1] such that f(a) = g(a) = a.8.17 (Leningrad Math Olympiad 1987 Grade 9 Elimination Round) Let (An)be a sequence of natural numbers such that A1 < 1999 and Ai+Ai+1 = Ai+2for any natural number i. Prove that if A1�An and A2 +An�1 are divisibleby 1999, then n is odd.8.18 (Leningrad Math Olympiad 1988 Grade 10 Elimination Round) Thefunction F :R! R is continuous and F (x) � F (F (x)) = 1 for all real x. It isknown that F (1000) = 999. Find F (500).8.19 (Leningrad Math Olympiad 1990 Grade 11 Elimination Round) Acontinuous function f :R ! R satisifes equality f(x + f(x)) = f(x) for allreal x. Prove that f is constant.8.20 (Leningrad Math Olympiad 1991 Grades 9-10 Elimination Round)Does there exist a function F :N! N such that for any natural number x,F (F (F (� � �F (x) � � �))) = x+ 1 ?Here F is applied F (x) times.8.21 (Leningrad Math Olympiad 1989 Grade 9 Elimination Round) A se-quence of real numbers a1; a2; a3; : : : has the property that ak+1 = (kak +6



1)=(k � ak) for any natural number k. Prove that this sequence containsin�nitely many postitive terms and in�nitely many negative terms.8.22 (Leningrad Math Olympiad 1989 Grade 10 Elimination Round) Asequence of real numbers a1; a2; a3; : : : has the property that jam + an �am+nj � 1=(m+n) for all m and n. Prove that this sequence is an arithmeticprogression.8.23 (Leningrad Math Olympiad 1991 Grade 11 Elimination Round) The�nite sequence a1; a2; a3; : : : ; an is called p-balanced if any sum of the formak + ak+p + ak+2p + � � � is the same for any k = 1; 2; : : : ; p. Prove that if asequence with 50 members is p� balanced for p = 3; 5; 7; 11; 13; 17, then allits members are equal to 0.8.24 (Int. Math Olympiad 1977) Let f(n) be a function de�ned on the setof all positive integers and having all its values in the same set. Prove thatif f(n+ 1) > f(f(n)) for each positive integer n, then f(n) = n for each n.8.25 (Int. Math Olympiad 1976). A sequence fung is de�ned by u0 = 2,u1 = 5=2, un+1 = un(u2n�1 � 2)� u1 for n = 1; 2; : : :. Prove that for positiveintegers n, [un] = 2[2n�(�1)n]=3where [x] denotes the greatest integer less than or equal to x.8.26 (Bratislava Correspondence Seminar, Fall 1999 3rd series): Find allfunctions f :R! R that satisfy: xf(x) + f(1� x) = x3 � x for all real x.8.27 (Bratislava Correspondence Seminar, Fall 1999 3rd series): Let f1; f2; f3; : : :be the elements of the Fibonacci sequence (that is, f1 = f2 = 1 and fn+2 =fn+1 + fn for all positive integers n). Prove that if P (x) is a a polyno-mial of degree 998 for which P (k) = fk for k = 1000; 1001; : : : ; 1998, thenP (1999) = f1999 � 1.8.28 (Bratislava Correspondence Seminar, Fall 1998 3rd series): For a func-tion f :Z! R, the following statement is true:f(z) = ( z � 10 for z > 100f(f(z + 11)) for z � 11Prove that for all z � 100, f(z) = 91.7



8.29 (Bratislava Correspondence Seminar, Fall 1998 3rd series | but I'msure this problem is not original): f :R! R is continuous and f(f(f(x))) =x for all real x. Prove that f(x) = x for all real x.8.30 (British Math Olympiad 1999). Any positive integer m can be writtenuniquely in base 3 as a string of 0s, 1s, and 2s (not beginning with a zero).For example:98 = (1 � 81) + (0 � 27) + (1 � 9) + (2 � 3) + (2 � 1) = (10122)3 :Let c(m) denote the sum of the cubes of the digits of the base 3 form of m;thus, for instance c(98) = 13 + 03 + 13 + 23 + 23 = 18. For any �xed positiveinteger n, de�ne the sequence (ur) by:u1 = n and ur = c(ur�1) for r � 2Show there is a positive integer r for which ur is in the set f1; 2; 17g.8.31 (British Math Olympiad 1999) Consider all functions f from the pos-itive integers to the positive integers such that:(i) for each positive integer m there is a unique positive integer n such thatf(n) = m.(ii) for each positive integer n, we have either f(n + 1) is either 4f(n)� 1or f(n)� 1.Find the set of positive integers p such that f(1999) = p for some functionf with properties (i) and (ii).8.32 (Putnam, 1999, problem A-6) The sequence (an)n�1 is de�ned bya1 = 1, a2 = 2, a3 = 24, and for n � 4,an = 6a2n�1an�3 � 8an�1a2n�2an�2an�3 :Show that, for all n, an is an integer multiple of n.8.33 (Putnam 1990) Let T0 = 2, T1 = 3, T2 = 6 and for n � 3,Tn = (n+ 4)Tn�1 � 4nTn�2 + (4n� 8)Tn�3 :8



The �rst few terms are 2, 3, 6, 14, 40, 152, 784, 5158, 40576, 363392. Find,with proof, a formula for Tn of the form Tn = An+Bn where fAng and fBngare well-known sequences.8.34 (Putnam 1980) For which real numbers a does the sequence de�ned bythe initial condition u0 = a and the recursion un+1 = 2un � n2 have un > 0for all n � 0?8.35 (USAMO 1993) Consider functions f : [0; 1]! R which satisfy:1. f(x) � 0 for all x in [0; 1],2. f(1) = 1,3. f(x) + f(y) � f(x+ y) whenever x, y, and x + y are all in [0; 1].Find, with proof, the smallest constant c such that f(x) � cx for everyfunction f satisfying the three conditions and every x in [0; 1].8.36 (USAMO 1993) Let a, b be odd positive integers. De�ne the sequencefn by putting f1 = a, f2 = b, and by letting fn for n � 3 be the greatest odddivisor of fn�1 + fn�2. Show that fn is constant for n su�ciently large anddetermine the eventual value as a function of a and b.8.37 (India, 1998) Let N be a positive integer such that N + 1 is prime.Choose ai from f0; 1g for i = 0; : : : ; N . Suppose that the ai are not all equal,and let f(x) be a polynomial such that f(i) = ai for i = 0; : : : ; N . Provethat the degree of f(x) is at least N .9 (From the 1995 Polya Team MathematicsCompetition)it will be convenient for us to list the sequences in this round with initialindex 0: that is, each sequence listed here should be considered to be of theform: a0; a1; a2; a3; : : :(1) The sequence 1; 1; 7; 13; 55; 133; : : : is an example of a sequence that sat-is�es the recurrence relationan = an�1 + 6an�2 for all n � 2.9



(a) Find all geometric sequences a0; a1; a2; : : : that(i) satisfy the same recurrence relation an = an�1 + 6an�2 for alln � 2.(ii) have the �rst term a0 equal to 1.(b) For the sequence 1; 1; 7; 13; 55; 133; : : : listed above, �nd a closedform expression for the 101st term a100 (that is, an expressioninvolving only simple sums, products, and exponentials, withoutthe use of P notation or indices).(c) Prove that there is only one sequence of real numbers satisfyingthis recurrence relation with both an in�nite number of positiveterms and an in�nite number of negative terms(2) The sequence 0; 1; 4; 9; 16; 25; : : : ; n2; : : : is an example of a sequence thatsatis�es the recurrence relationan = 3an�1 � 3an�2 + an�3 for all n � 3.(a) Find all geometric sequences a0; a1; a2; a3; a4; : : : that(i) satisfy the same recurrence relation an = 3an�1�3an�2+an�3for all n � 3.(ii) have the �rst term a0 equal to 1.(b) For the general sequence a0; a1; a2; a3; : : : satisfying the recurrencerelation, �nd a closed form expression for a100 in terms of a0, a1,and a2.(c) Prove that there are no sequences of real numbers satisfying therecurrence relation with both an in�nite number of positive termsand an in�nite number of negative terms(3) Prove that the sequence given by a0 = 2 and, for n � 1,an = The integer closest to (5 + 2p7)nsatis�es a recurrence relation of the form an = x � an�1 + y � an�2 forn � 2. (For partial credit, �nd the values for x and y.)10


