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Abstract

This article provides material to help a teacher lead a classin an adventure of mathematical discovery using
Pascal’s triangle and various related ideas as the topic. There is plenty of mathematical content here, so it can
certainly be used by anyone who wants to explore the subject,but pedagogical advice is mixed in with the
mathematics.

1 General Hints for Leading the Discussion

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

��	 @@R

��	 @@R ��	 @@R

��	 @@R ��	 @@R ��	 @@R

��	 @@R ��	 @@R ��	 @@R ��	 @@R

��	 @@R ��	 @@R ��	 @@R ��	 @@R ��	 @@R

Figure 1: Pascal’s Triangle

The material here should not be presented as a lec-
ture. Begin with a simple definition of the triangle
and have the students look for patterns. When they
notice patterns, get them to find proofs, when pos-
sible. By “proof” we do not necessarily mean a
rigorous mathematical proof, but at least enough of
an argument that it is convincing and that could, in
principle, be extended to a rigorous proof. Some
sample arguments/proofs are presented below, but
they represent only one approach; try to help the
students find their own way, if possible.

It is not critical to cover all the topics here, or to
cover them in any particular order, although the or-
der below is reasonable. It is important to let the
investigation continue in its own direction, with perhaps alittle steering if the class is near something very inter-
esting, but not quite there.

The numbers in Pascal’s triangle provide a wonderful example of how many areas of mathematics are intertwined,
and how an understanding of one area can shed light on other areas. The proposed order of presentation below
shows how real mathematics research is done: it is not a straight line; one bounces back and forth among ideas,
applying new ideas back to areas that were already covered, shedding new light on them, and possibly allowing
new discoveries to be made in those “old” areas.

Finally, the material here does not have to be presented in a single session, and in fact, multiple sessions might be
the most effective presentation technique. That way there’s some review, and the amount of new material in each
session will not be overwhelming.

2 Basic Definition of Pascal’s Triangle

Most people are introduced to Pascal’s triangle by means of an arbitrary-seeming set of rules. Begin with a1 on
the top and with1’s running down the two sides of a triangle as in figure 1. Each additional number lies between
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two numbers and below them, and its value is the sum of the two numbers above it. The theoretical triangle is
infinite and continues downward forever, but only the first 6 lines appear in figure 1. In the figure, each number
has arrows pointing to it from the numbers whose sum it is. More rows of Pascal’s triangle are listed on the final
page of this article.

A different way to describe the triangle is to view the first line is an infinite sequence of zeros except for a single
1. To obtain successive lines, add every adjacent pair of numbers and write the sum between and below them. The
non-zero part is Pascal’s triangle.

3 Some Simple Observations

Now look for patterns in the triangle. We’re interested in everything, even the most obvious facts. When it’s easy
to do, try to find a “proof” (or at least a convincing argument)that the fact is true. There are probably an infinite
number of possible results here, but let’s just look at a few,including some that seem completely trivial. In the
examples below, some typical observations are in bold-facetype, and an indication of a proof, possibly together
with additional comments, appears afterwards in the standard font.

All the numbers are positive. We begin with only a positive1, and we can only generate numbers by including
additional1’s, or by adding existing positive numbers. (Note that this is really an inductive proof, if written out
formally.)

The numbers are symmetric about a vertical line through the apex of the triangle. The initial row with a
single1 on it is symmetric, and we do the same things on both sides, so however a number was generated on
the left, the same thing was done to obtain the correspondingnumber on the right. This is a fundamental idea in
mathematics: if you do the same thing to the same objects, youget the same result.

Look at the patterns in lines parallel to the edges of the triangle. There are nice patterns.The one that is
perhaps the nicest example is the one that goes:

1, 3, 6, 10, 15, 21, . . .

These are just the sums:(1), (1 + 2), (1 + 2 + 3), (1 + 2 + 3 + 4), et cetera. A quick examination shows why
the triangle generates these numbers. Note that they are sometimes called “triangular numbers” since if you make
an equilateral triangle of coins, for example, these numbers count the total number of coins in the triangle. In fact,
the next row:

1, 4, 10, 20, 35, . . .

are called the “pyramidal numbers”. They would count the number of, say, cannonballs that are stacked in trian-
gular pyramids of various sizes. Is it clear why adding triangular numbers together give the pyramidal numbers?
Is it clear how Pascal’s triangle succeeds in adding the triangular numbers in this way? In the same vein, if those
rows represent similar counts in 2 and 3 dimensions, shouldn’t the first two rows somehow represent counts of
something in 0 and 1 dimensions? They do – and this is could be anice segue into the behavior of patterns in 4
and higher dimensions.

If you add the numbers in a row, they add to powers of 2.If we think about the rows as being generated from
an initial row that contains a single1 and an infinite number of zeroes on each side, then each numberin a given
row adds its value down both to the right and to the left, so effectively two copies of it appear. This means that
whatever sum you have in a row, the next row will have a sum thatis double the previous. It’s also good to note
that if we number the rows beginning with row0 instead of row1, then rown sums to2n. This serves as a nice
reminder thatx0 = 1, for positive numbersx.
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If you alternate the signs of the numbers in any row and then add them together, the sum is0. This is easy
to see for the rows with an even number of terms, since some quick experiments will show that if a number on the
left is positive, then the symmetric number on the right willbe negative, as in:1− 5 + 10− 10 + 5 − 1. One way
to see this is that the two equal numbers in the middle will have opposite signs, and then it’s easy to trace forward
and back and conclude that every symmetric pair will have opposite signs.

It’s worth messing around a bit to try to see why this might work for rows with an odd number. There are probably
lots of ways to do it, but here’s a suggestion. Look at a typical row, like the fifth:

+1 − 5 + 10 − 10 + 5 − 1.

We’d like the next row (the sixth, in this case) to look like this:

+1 − 6 + 15 − 20 + 15 − 6 + 1.

If we give letter names to the numbers in the row above it:

a = +1; b = −5; c = +10; d = −10; e = +5; f = −1,

then how can we write the elements in row6 in terms of those in row5? Here’s one nice way to do it:

+1 = a − 0;−6 = b − a; +15 = c − b;−20 = d − c; +15 = e − d;−6 = f − e; +1 = 0 − f.

Now just add the terms:

a − 0 + b − a + c − b + d − c + e − d + f − e + 0 − f,

and the sum is obviously zero since each term appears twice, but with opposite signs.
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Figure 2: The Hockey Stick

The “hockey-stick rule”: Begin from any 1 on the right
edge of the triangle and follow the numbers left and down
for any number of steps. As you go, add the numbers you
encounter. When you stop, you can find the sum by taking
a 90-degree turn on your path to the right and stepping
down one.It is called the hockey-stick rule since the numbers
involved form a long straight line like the handle of a hockey-
stick, and the quick turn at the end where the sum appears is
like the part that contacts the puck. Figure 2 illustrates two
of them. The upper one adds1 + 1 + 1 + 1 + 1 to obtain5,
and the other adds1 + 4 + 10 + 20 to obtain35. (Because
of the symmetry of Pascal’s triangle, the hockey sticks could
start from the left edge as well.)

To see why this always works, note that whichever1 you start with and begin to head into the triangle, there is a1
in the other direction, so the sum starts out correctly. Thennote that the number that sits in the position of the sum
of the line is always created from the previous sum plus the new number.

Note how this relates to the triangular and pyramidal numbers. If we think of pyramids as “three-dimensional
triangles” and of lines with1, 2, 3, 4, . . . items in them as “one dimensional triangles”, and single items as a “zero-
dimensional triangle”, then the sum of zero-dimensional triangles make the one dimensional triangles, the sum of
the one-dimensional trinagles make the two-dimensional triangles and so on. With this interpretation, look at the
diagonals of Pascal’s triangle as zero, one, two, three, . . .dimensional triangles, and see how the hockey-stick rule
adds the items in each diagonal to form the next diagonal in exactly the manner described above.
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Figure 3: Odd-Even Pascal’s Triangle

There are interesting patterns if we simply consider
whether the terms are odd or even.See figure 3. In the
figure, in place of the usual numbers in Pascal’s triangle
we have circles that are either black or white, depending
upon whether the number in that position is odd or even,
respectively.

Look at the general pattern, but it is also interesting to
note that certain rows are completely black. What are
those row numbers? They are rows0, 1, 3, 7, 15, 31, and
each of those numbers is one less than a perfect power of
2.

How could you possibly prove this? Well, one approach
is basically recursive: Notice the triangles of even num-
bers with their tips down. Clearly, since adding evens
yields an even, the interiors will remain even, but at the
edges where they’re up against an odd number, the width
will gradually decrease to a point. Now look at the lit-
tle triangle made from the four rows0 through3. At the
bottom, you’ve got all odd numbers, so the next line will
be all even, except for the other edges. The outer edges must look like two copies of the initial triangle until they
meet. Once you’ve got all odd, we now have the shape of the triangle made of the first 8 rows, and the next step is
two odds at the end, with evens solidly between them. The argument repeats, but with triangles of twice the size,
et cetera.

There’s nothing special about odd-even; the same sorts of investigations can be made looking for multiples of other
numbers.
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Figure 4: Fibonacci Series

The Fibonacci sequence is hidden in Pascal’s tri-
angle.

See figure 4. If we take Pascal’s triangle and draw
the slanting lines as shown, and add the numbers
that intersect each line, the sums turn out to be the
values in the Fibonacci series:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . . .

The first two numbers are1 and every number after
that is simply the sum of the two previous numbers.

One argument to convince yourself that this is true
is to note that the first two lines are OK, and then
to note that each successive line is made by com-
bining exactly once, each of the numbers on the

previous two lines. In other words, note that the sums satisfy exactly the same rules that the Fibonacci sequence
does: the first two sums are one, and after that, each sum can beinterpreted as the sum of the two previous sums.
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4 Pascal’s Triangle and the Binomial Theorem

Most people know what happens when you raise a binomial to integer powers. The table below is slightly unusual
in that coefficients of1 are included since it will be the coefficients that are of primary importance in what follows:

(L + R)0 = 1

(L + R)1 = 1L + 1R

(L + R)2 = 1L2 + 2LR + 1R2

(L + R)3 = 1L3 + 3L2R + 3LR2 + 1R3

(L + R)4 = 1L4 + 4L3R + 6L2R2 + 4LR3 + 1R4

(L + R)5 = 1L5 + 5L4R + 10L3R2 + 10L2R3 + 5LR4 + 1R5

A quick glance shows that the coefficients above are exactly the same as the numbers in Pascal’s triangle. If this
is generally true, it is easy to expand a binomial raised to anarbitrary power. If we want to deal with(L + R)n,
we use as coefficients the numbers in rown of Pascal’s triangle. (Note again why it is convenient to assign the
first row the number zero.) To the first coefficient, we assignLn, and for each successive coefficient, we lower the
exponent onL and raise the exponent onR. (Note that we could have said, “assignLnR0 to the first coefficient.)
The exponent onL will reach0 and the exponent onR will reachn just as we arrive at the last coefficient in row
n of Pascal’s triangle.

OK, but why does it work? The easiest way to see your way through to a proof is to look at a couple of cases
that are not too complex, but have enough terms that it’s easyto see patterns. For the example here, we’ll assume
that we’ve successfully arrived at the expansion of(L + R)4 and we want to use that to compute the expansion of
(L + R)5.

The brute-force method of multiplication from the algebra 1class is probably the easiest way to see what’s going
on. To obtain(L + R)5 from (L + R)4, we simply need to multiply the latter by(L + R):

L4 + 4L3R + 6L2R2 + 4LR3 + R4

L + R

L4R + 4L3R2 + 6L2R3 + 4LR4 + R5

L5 + 4L4R + 6L3R2 + 4L2R3 + LR4

L5 + 5L4R + 10L3R2 + 10L2R3 + 5LR4 + R5

(1)

In the multiplication illustrated in equation (1) we see that the expansion for(L+R)4 is multiplied first byR, then
by L, and then those two results are added together. Multiplication by R simply increases the exponent onR by
one in each term and similarly for multiplication byL. In other words, before the expressions are added, they have
the same coefficients; the only thing that has changed are thevalues of the exponents.

But notice that the two multiplications effectively shift the rows by one unit relative to each other, so when we
combine the multiplications of the expansion of(L + R)4 by L andR, we wind up adding adjacent coefficients.
It’s not too hard to see that this is exactly the same method weused to generate Pascal’s triangle.

But once we’re convinced that the binomial theorem works, wecan use it to re-prove some of the things we
noticed in section 3. For example, to show that the numbers inrow n of Pascal’s triangle add to2n, just consider
the binomial theorem expansion of(1 + 1)n. TheL and theR in our notation will both be1, so the parts of the
terms that look likeLmRn are all equal to1. Thus(1 + 1)n = 2n is the sum of the numbers in rown of Pascal’s
triangle. Similarly, to show that with alternating signs the sum is zero, look at the expansion of(1 − 1)n = 0n.
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5 An Application to Arithmetic

A possible introduction to the previous section might be to have the class look at powers of11:

110 = 1

111 = 11

112 = 121

113 = 1331

114 = 14641

115 = 161051

116 = 1771561

It’s interesting that up to the fourth power, the digits in the answer are just the entries in the rows of Pascal’s
triangle. What is going on, of course, is that11 = 10 + 1, and the answers are just(10 + 1)n, for variousn.
Everything works great until the fifth row, where the entriesin Pascal’s triangle get to be10 or larger, and there is
a carry into the next row. Although Pascal’s triangle is hidden, it does appear in the following sense. Consider the
final number,116:

(10 + 1)6 = 106 = 1000000
+ 6 · 105 = 600000
+ 15 · 104 = 150000
+ 20 · 103 = 20000
+ 15 · 102 = 1500
+ 6 · 101 = 60
+ 1 · 100 = 1

= 1771561

By shifting the columns appropriately, the numbers in any row of Pascal’s triangle can be added to calculate11n,
by using the numbers in rown.

Could similar ideas be used to calculate101n or 1001n?

6 Combinatorial Aspects of Pascal’s Triangle

Before going into the theory, it’s a good idea to look at a few concrete examples to see how one could do the
counting without any theory, and to notice that the counts weobtain from a certain type of problem (called “com-
binations”) all happen to be numbers that we can find in Pascal’s triangle.

Let’s start with an easy one: How many ways are there to choosetwo objects from a set of four? It doesn’t take
too long to list them for some particular set, say{A, B, C, D}. After a little searching, it appears that this is a
complete list:

AB, AC, AD, BC, BD, CD.

The first time students try to count them, it’s unlikely that they’ll come up with them in a logical order as presented
above, but they’ll search for a while, find six, and after somefutile searching, they’ll be convinced that they’ve got
all of them. The obvious question is, “How do youknow you’ve got them all?”
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There are various approaches, but one might be something like, “We’ll list them in alphabetical order. First find all
that begin withA. Then all that begin withB, and so on.”

Try a couple of others; say, 3 objects from a set of 5. The set is{A, B, C, D, E} and here are the 10 possible
groups of objects (listed in alphabetical order):

ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE, CDE

Note that the strategy still works, but we have to be careful since even while we’re working on the part where we
find all triples that start withA, we still have to find all the pairs that can follow. Note that this has, in a sense,
been solved in the previous example, since if you know you’rebeginning withA, there are four items left, and the
previous exercise showed us that there are six ways to do it.

Now count the number of ways to choose 2 items from a set of five.Use the same set:{A, B, C, D, E}, and here
are the 10 results:

AB, AC, AD, AE, BC, BD, BE, CD, CE, DE

Is it just luck that there are the same number of ways of getting 3 items from a set of5 and2 items from a set of5?
A key insight here is that if I tell you which ones I’mnot taking, that tells you which ones Iam taking. Thus for
each set of2 items, I can tell you which2 they are, or, which3 they aren’t! Thus there must be the same number
of ways of choosing2 from 5 or 3 from 5.

Obviously, the same thing will hold for any similar situation: there are the same number of ways to pick11 things
out of17 as there are to pick6 out of17, and so on. This is the sort of thing a mathematician would call “duality”.
The general statement is this: There are the same number of ways to choosek things fromn as there are to choose
n − k things fromn, assuming thatk ≤ n.

After you’ve looked at a few simple situations, it’s easy to get a lot of other examples. The easiest is: How many
ways are there to pick1 item from a set ofn? The answer is obviouslyn. And from the previous paragraphs, there
are alson ways to choosen − 1 items from a set ofn.

A slightly more difficult concept is this: How many ways are there to choose0 (zero) items from a set ofn. The
correct answer is always1 – there is a single way to do it: just pick nothing. Or another way to look at it is that
there’s clearly only one way to choose alln items from a set ofn: take all of them. But the duality concept that
we’ve just considered would imply that there are the same wayto choosen items fromn as0 items fromn.

After looking at a few of these, we notice that the counts we obtain are the same as the numbers we find in Pascal’s
triangle. Not only that, but, at least for the few situationswe’ve looked at, the number of ways to choosek things
from a set ofn seems to be the number in columnk (starting the column count from zero) and in rown (again,
starting the row count from zero). The only entry that might seem a little strange is the one for row zero, column
zero, but even then, it ought to be1, since there’s really only one way to choose no items from an empty set: just
take nothing.

With this encouragement, we can try to see why it might be truethat combinations and the numbers in Pascal’s
triangle are the same.

First, a little notation. In order to avoid saying over and over something like, “the number of ways to choosek
objects from a set ofn objects”, we will simply say “n choosek”. There are various ways to write it, but “(n
choosek)” works, with the parentheses indicating a grouping. The most common form, of course, is that of the
binomial coefficient:

(

n

k

)

, which will turn out to be the same thing. So from our previouswork, we can say that (5
choose2) = (5 choose3) = 10, or, alternatively,

(

5

2

)

=
(

5

3

)

= 10.

Here’s one way to look at it: We’ll examine a special case and see why it works. Then, if we look at the special
numbers we’ve chosen, we’ll see that there is nothing special at all about them, and the general case is just a
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particular example.

Suppose we need to find out how many ways there are to choose4 things from a set of7, and let’s say that
we’ve already somehow worked out the counts for all similar problems for sets containing6 or fewer objects. For
concreteness, let’s say that the set of7 things is{A, B, C, D, E, F, G}. If we consider the sets of four items that
we can make, we can divide them into two groups. Some of them will contain the memberA (call this group 1)
and some will not (group 2).

Every one of the sets in group 1 has anA plus three other members. Those additional three members must be
chosen from the set{B, C, D, E, F, G} which has six elements. There are (6 choose3) ways to do this, so there
are (6 choose3) elements in group 1. In group 2, the elementA does not appear, so the elements of group 2 are all
the ways that you can choose4 items from a set of the remaining6 objects. Thus there are (6 choose4) ways to do
this. Thus:

(7 choose 4) = (6 choose 3) + (6 choose 4)

or, using the binomial coefficients:
(

7

4

)

=

(

6

3

)

+

(

6

4

)

.

Now there’s clearly nothing special about7 and4. To work out the value of (n choosek) we pick one particular
element and divide the sets into two classes: one of subsets containing that element and the other of subsets that do
not. There are (n − 1 choosek − 1) ways to choose subsets of the first type and (n − 1 choosek) ways to choose
subsets of the second type. Add them together for the result:

(n choose k) = (n − 1 choose k − 1) + (n − 1 choose k)

or:
(

n

k

)

=

(

n − 1

k − 1

)

+

(

n − 1

k

)

.

If we map these back to Pascal’s triangle, we can see that theyamountexactly to our method of generating new
lines from previous lines.

7 Back to the Binomial Theorem

Now, let’s go back to the binomial theorem and see if we can somehow interpret it as a method for choosing “k
items from a set ofn”.

Multiplication over the real numbers is commutative, in thesense thatLR = RL – we can reverse the order of
a multiplication and the result is the same. If we were to do a multiplication of a binomial by itself in a strictly
formal way, the steps would look like this:

(L + R)(L + R) = L(L + R) + R(L + R)

= LL + LR + RL + RR

= LL + LR + LR + RR

= LL + 2LR + RR.

The first step uses the distributive law; the next uses the distributive law again, then we use the commutative law
of multiplication to change theRL to LR, and finally, we can combine the two copies ofLR to obtain the product
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in the usual form – well, usual except that we’ve writtenLL andRR instead ofL2 andR2 for reasons that will
become clear later.

But suppose for a minute that we cannot use the commutative law of multiplication (but that we can rearrange the
terms, so that additionis commutative). Using the distributive law we can still do allthe multiplications needed to
generate(L + R)n, but we will wind up with a lot of terms that cannot be combined. In fact, none of them can be
combined, and(L + R)n will contain 2n terms. We can compute(L + R)n+1 by multiplying out the expanded
form of (L + R)n by one additional(L + R). The calculation above shows the result of(L + R)2; we’ll use that
to generate(L + R)3:

(L + R)3 = (L + R)(L + R)2

= (L + R)(LL + LR + RL + RR)

= L(LL + LR + RL + RR) + R(LL + LR + RL + RR)

= LLL + LLR + LRL + LRR + RLL + RLR + RRL + RRR.

Without going through the detailed calculations that we used above, but using the same method, here is what we
would obtain for(L + R)4:

(L + R)4 = LLLL + LLLR + LLRL + LLRR + LRLL + LRLR + LRRL + LRRR +

RLLL + RLLR + RLRL + RLRR + RRLL + RRLR + RRRL + RRRR.

Notice that in our expansions in this manner of(L+R)2, (L+R)3 and(L+R)4, the results are simply all possible
arrangements of2, 3 or 4 R’s andL’s. It’s easy to see why. If we multiply out something like:

(L + R)(L + R)(L + R)(L + R)

we are basically making every possible choice of one of the two in each set of parentheses, and since there are2
choices per group and4 groups, there are24 = 16 possible sets of choices.

Now, when we do have commutativity, we convert terms likeRLRL to L2R2 throughout, and then combine like
terms. Let’s do that, but in the opposite order: first, we’ll combine the terms we know will result in the same value,
as shown below. Groups with the same number ofR’s andL’s are enclosed in parentheses:

(L + R)2 = (LL) + (LR + RL) + (RR)

(L + R)3 = (LLL) + (LLR + LRL + RLL) + (LRR + RLR + RRL) + (RRR)

(L + R)4 = (LLLL) + (LLLR + LLRL + LRLL + RLLL) +

(LLRR + LRLR + LRRL + RLLR + RLRL + RRLL) +

(LRRR + RLRR + RRLR + RRRL) + (RRRR).

The groups above have sizes:[1, 2, 1], then[1, 3, 3, 1], then[1, 4, 6, 4, 1]. These are the numbers in rows2, 3 and
4 of Pascal’s triangle. Stop for a second and look closely at these grouped terms to see if there is some way to
interpret them as (n choosek).

Here is one way. Look at the largest group: the six terms with2 R’s and2 L’s in the expansion of(L + R)4:

(LLRR + LRLR + LRRL + RLLR + RLRL + RRLL).

If we interpret the four letters as indicating positions of four items in a set, then anL means “choose the item” and
anR means “do not choose it”. ThusLLRR means to take the first two and omit the second two;RLLR means
to take the second and third items only, and so on.
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Clearly, since all the possibilities appear here, the number of terms (6) is exactly the same as the number of ways
that we can choose2 items from a set of4. When the commutative law of addition is applied to these terms,
since they all have2 R’s and2 L’s, all will becomeL2R2, and since there are6 of them, the middle term of the
expansion of(L + R)4 will be 6L2R2.

Again, there’s nothing special about the middle term of the expansion using the fourth power; the same arguments
can be used to show thatevery term inevery binomial expansion can be interpreted in its combinatorialsense.

8 Statistics: The Binomial Distribution

In the previous section (Section 7) we looked at the patternsof L andR that related to raising a binomial to a
power:(L + R)n. If we are instead looking at a game that consists of flipping acoinn times, and are interested in
the patterns of “heads” and “tails” that could arise, it willturn out that if we just substitute “T ” for “ L” and “H”
for “R” then we will have basically described the situation.

Consider flipping a fair coin (a coin that has equal chances oflanding “heads” or “tails” which we will denote from
now on as “H” and “T ”) 3 times. If we indicate the result of such an experiment as athree-letter sequence where
the first is the result of the first flip, the second represents the second, and so on, then here are all the possibilities:

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT. (2)

Note that this (except for the “+” signs) is exactly what we would get if we do the multiplication below without
having the commutative law as we did in the expansions of(L + R)3 and(L + R)4 in Section 7:

(H + T )3 = HHH + HHT + HTH + HTT + THH + THT + TTH + TTT.

There is no reason to believe, since the coin is fair, that anyof the patterns in 2 is any more or less likely than any
other, and if the only thing you are interested in is the number of “heads”, then you can see thatHHH andTTT
both occur once, while results with one “head” occurs three times and similarly for results with two “heads”. Thus,
if you were to repeat the experiment of doing three coin flips,in the long run, the ratio of times the experiment
yielded zero, one, two or three “heads” would be roughly in the ratio of1 : 3 : 3 : 1.

Recall that in Section 7 we also interpreted the expansion of(L + R)n as listing selections ofL or R from each
term when they are written like this:

(L + R)n = (L + R)(L + R)(L + R) · · · (L + R).

But selecting anL or R is like telling whether the coin came up “heads” or “tails” ineach of the terms.

There is nothing special about three flips, obviously, so if the experiment is to don flips, then there are2n possible
outcomes, and if all you care about is the number of timesT occurred, and not on the actual order of theT and
H results that generated it, then there are

(

n

0

)

ways to obtain zero “heads”,
(

n

1

)

ways to obtain one “head”, and in
general,

(

n

k

)

ways to obtain exactlyk “heads”.

In probability terms, the probability of obtaining exactlyk heads inn flips is:

1

2n

(

n

k

)

.

What if your experiment is not with fair coins, but rather a repeated test where the odds are the same for each test?
For example, suppose the game is to roll a single dien times, and you consider it a win if a1 occurs, but a loss if
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2, 3, . . . , 6 occurs? Thus you win, on average, one time in six, or equivaltently, with a probability of1/6. If you
repeat the rollingn times, what is the probability of getting exactlyk wins in this situation?

We can describe any experiment like this by labeling the probability of success asp and the probability of failure
asq such thatp + q = 1 (in other words, you either win or lose – there are no other possibilities). For flipping a
fair coin,p = q = 1/2; for the dice experiment described above,p = 1/6 andq = 5/6.

The analysis can begin as before, where we just list the possible outcomes. Using “W ” for “win” and “ L” for
“lose”, the results of three repeats are the familiar:

WWW, WWL, WLW, WLL, LWW, LWL, LLW, LLL.

But the chance of getting aW is now different from the chance of getting aL. What is the probability of getting
each of the results above. For any particular set, sayLWL, to obtain that, you first lose (with probabilityq) then
you win (with probabilityp) and then you lose again (with probabilityq again). Thus the chance that that particular
result occurs isqpq. For the three-repeat experiment, the chances of 0, 1, 2 and 3wins (P (0), P (1), P (2) and
P (3)) are given by:

P (0) = qqq = q3

P (1) = pqq + qpq + qqp = 3pq2

P (2) = ppq + pqp + qpp = 3p2q

P (3) = ppp = p3

Notice that there’s nothing special about repeating the experiment three times. If the experiment is repeatedn
times, the probability of obtaining exactlyk wins is given by the formula:

P (k) =

(

n

k

)

pkqn−k.

Thus if you roll a fair die7 times, the probability that you will obtain exactly2 wins is given by:

P (2) =

(

7

2

)

(1

6

)2(5

6

)5

=
21 · 1 · 3125

279936
=

65625

279936
≈ 0.2344286

Finally, note that there’s no need for the same experiment tobe repeated. If you take a handful of ten coins and
flip them all at once, the odds of getting, say, exactly four heads is the same as the odds of getting four heads in
ten individual flips of the same coin. Just imagine flipping the first, then the second, and so on, and leaving them
in order on the table after each flip.

9 Back to Combinatorics

OK, now, in principle, we can calculate any binomial coefficient simply using addition over and over to obtain the
entries in the appropriate row of Pascal’s triangle. If you need a number like (95 choose11), however, this would
take along time, starting from scratch. The goal of this section is to show that:

(n choose k) =

(

n

k

)

=
n!

k!(n − k)!
.
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As before, the best way to begin is with a concrete example, and we’ll use (4 choose3). One approach is to think
about it this way: There are4 ways to choose the first object, and after that is chosen,3 ways to choose the second
(since one is already picked) and finally,2 ways to choose the last one. So there should be4× 3× 2 = 24 ways to
do it. This, of course, conflicts with our previous result that (4 choose3) = 4, so what’s going on?

Let’s again use the set{A, B, C, D} as the set of four objects. If we make the4× 3× 2 choices as above, here are
the sets we obtain (in alphabetical order, to be certain we’ve omitted nothing):

ABC ABD ACB ACD ADB ADC
BAC BAD BCA BCD BDA BDC
CAB CAD CBA CBD CDA CDB
DAB DAC DBA DBC DCA DCB

The problem becomes obvious: we’ve included lots of groups that are identical:ABC = ACB = BAC and so
on. We want to count groups where the ordering doesn’t matterand we’ve generated groups that have an order.
Let’s regroup the list above so that each row contains only simple rearrangements of the same items:

ABC ACB BAC BCA CAB CBA
ABD ADB BAD BDA DAB DBA
ACD ADC CAD CDA DAC DCA
BCD BDC CBD CDB DBC DCB

Notice that each appears exactly6 times, so the number24 we obtained has counted each subset6 times. To find
the true number of subsets, we have to divide24 by 6 and we obtain the correct answer,4.

How many rearrangements are there of3 items? Well, the first can be any of3, then there remain2 choices for the
second, and the final item is determined. The result is3× 2× 1 = 3! = 6. Similarly, there are4× 3× 2× 1 = 24
rearrangements of4 items and so on.

As before, there’s nothing special about this method to calculate (4 choose3). If we want to find out how many
combinations there are ofk things from a set ofn, we say that the first can be any ofn, the second any ofn − 1,
and so on, fork terms. But when we do this, we’ll obtain every possible rearrangement of thosek terms so we will
have counted each onek(k − 1)(k − 2) · · · 3 · 2 · 1 = k! times.

Putting this together, we obtain a simple method to do the calculation. Here are a couple of examples:

(7 choose 4) =

(

7

4

)

=
7 · 6 · 5 · 4

4 · 3 · 2 · 1
= 35

(9 choose 3) =

(

9

3

)

=
9 · 8 · 7

3 · 2 · 1
= 84

(11 choose 5) =

(

11

5

)

=
11 · 10 · 9 · 8 · 7

5 · 4 · 3 · 2 · 1
= 462

Notice how easy this is. If you’re choosingk things from a set ofn, start multiplying the numbersn, n − 1, and
so on fork terms, and then divide by thek terms ofk!. If we count carefully, we can see that the general formula
looks like this:

(

n

k

)

=
n(n − 1)(n − 2) · · · (n − k + 1)

k!
.

The form above is a little inconvenient to use mathematically because of the numerator, but notice that we can
convert the numerator to a pure factorial if we multiply it all the rest of the way down, which is to say, multiply

12



the numerator by(n − k)(n − k − 1) · · · 3 · 2 · 1 = (n − k)!. So multiply both numerator and denominator of the
equation above by(n − k)! to obtain the result we wanted:

(

n

k

)

=
n!

k!(n − k)!
. (3)

If you need to do an actual calculation of this sort, use the first form, since massive canceling will occur. In the
example:

(11 choose 5) =

(

11

5

)

=
11 · 10 · 9 · 8 · 7

5 · 4 · 3 · 2 · 1

we can cancel the10 in the numerator by the5 and2 in the denominator. The4 in the denominator cancels the8
upstairs to a2, and the3 similarly cancels with the9 yielding 3, and the problem reduces to:

(11 choose 5) =

(

11

5

)

=
11 · 3 · 2 · 7

1
= 462.

The form in equation 3 is much easier to calculate with algebraically. For example, if we took this as the definition
of the terms in Pascal’s triangle, we could show that each rowis obtained from the previous by adding the two
above it if we could show that:

(

n

k

)

=

(

n − 1

k

)

+

(

n − 1

k − 1

)

.

Just for the algebraic exercise, let’s do this calculation by converting the terms to the equivalent factorial forms.
We need to show that:

n!

k!(n − k)!
=

(n − 1)!

k!(n − k − 1)!
+

(n − 1)!

(k − 1)!(n − k)!
.

To do so, all we need to do is to covert the terms on the right so that they have a common denominator and then
add them together. The common denominator isk!(n − k)!.

(n − 1)!

k!(n − k − 1)!
+

(n − 1)!

(k − 1)!(n − k)!
=

(n − 1)!(n − k)

k!(n − k)(n − k − 1)!
+

(n − 1)!k

k(k − 1)!(n − k)!

=
(n − 1)!(n − k)

k!(n − k)!
+

(n − 1)!k

k!(n − k)!

=
(n − k + k)(n − 1)!

k!(n − k)!

=
n!

k!(n − k)!
,

which is what we needed to show.

Notice also that the factorial form shows instantly that
(

n

k

)

=
(

n

n−k

)

; in other words, that choosing which of thek
items to include gives the same value as choosing then − k items to omit.

Finally, it’s probably a good idea if the students haven’t seen it, to point out that these binomial coefficients can be
used to find things like lottery odds. If you need to make6 correct picks from50 choices to win the lottery, what
are the chances of winning? Well, there are

(

50

6

)

= 15890700 equally likely choices, so you’ll win about one time
in every16 million.
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10 An “Unrelated” Problem

Suppose we have a grid of city streets, withm north-south streets andn east-west streets. Figure 5 illustrates an
example withm = n = 9 although there is no need for the two to be the same. The goal isto find the number of
paths from one corner to the opposite corner (A to B in the figure) that are the shortest possible distance, in other
words, with no backtracking. A typical shortest route is shown as a bold path on the grid in the figure. We will
examine this problem in a couple of different ways.

One way to think of it (using the example in the figure) is that the entire route has to include8 steps down (and8
to the right, of course). But those8 downward steps have to occur distributed among the9 streets that go down. In
the example route,2 steps down are taken on the fourth street,4 more on the fifth street, and1 more on each of the
eighth and ninth streets. If you think about it, simply knowing how many of the downward steps are taken on each
of the9 streets completely determines the route.

AA

BB

Figure 5: Routes through a grid

So the problem is equivalent to the following: How many ways are there
to assign8 identical balls (steps down) into9 labeled boxes (the up-down
streets)? This is similar to the “n choosek” type problems, but not quite the
same. But here’s a nice way to visualize the “identical ballsin non-identical
boxes” problem. Imagine that the boxes are placed side-by-side next to each
other, and that we use a vertical bar to indicate the boundarybetween adjacent
boxes. Since there are9 boxes in this example, there will be8 boundary walls.
Similarly, let’s represent the balls by stars, and there will be8 of those.

We claim thatevery listing of vertical bars and asterisks corresponds to exactly
one valid shortest-path through the grid. For example, the path in the example
corresponds to this:

||| ∗ ∗| ∗ ∗ ∗ ∗||| ∗ |∗

Thus the number of paths simply corresponds to the number of arrangements of8 bars and8 stars. Well, we are
basically writing down16 symbols in order, and if we know which8 of them are stars, the others are bars, so there
must be (16 choose8) = 12870 ways to do this.

If there arem streets byn streets, there aren− 1 steps down to be distributed amongm streets. Thus there will be
m− 1 vertical bars andn− 1 asterisks. The answer is that there are (m + n− 2 choosen− 1) routes in anm× n
grid.

It’s actually probably worth counting the streets in a few simple grids before pulling out the big guns and obtaining
a general solution in a classroom setting.

1 1 1 1 1 1
| | | | | |
1 2 3 4 5 6
| | | | | |
1 3 6 10 15 21
| | | | | |
1 4 10 20 35 56
| | | | | |
1 5 15 35 70 126
| | | | | |
1 6 21 56 126 252

Figure 6: Counting paths in a grid

Now look at the same problem in a different way. Suppose we begin at point
A. There is exactly one way to get there: do nothing. Now look atthe points
on the horizontal street fromA or the vertical street fromA. For every one
of those points, there’s only one shortest path, the straight line. What we’re
going to do is label all the points on the grid with the number of shortest
paths there are to get there. From these simple observations, all the labels
on the top and left edges of the grid will be labeled with the number1.

Now for the key observation: to get to any point inside the grid, you either
arrived from above or from the left. The total number of unique routes to
that point will be the total number of routes to the point above plus the total
number of routes to the point on your left. The upper left corner of the
resulting grid will thus look something like what is illustrated in figure 6.
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Notice that this is just Pascal’s triangle, turned on its side!

In fact, if we start at the apex of Pascal’s triangle and take paths that always
go down, but can go either to the right or left at each stage, then the numbers
in the triangle indicate the number of paths by which they canbe reached.
In the early examples with the binomial theorem, we usedR andL, that we
can now think of as “right” and “left”. When we reach the position in Pascal’s triangle corresponding to (7 choose
3) what that really amounts to is the number of paths from the apex that are 7 steps long, and which contain 3
moves to the left (and hence7 − 3 = 4 moves to the right).

11 Binomial Coefficient Relationships

Here is a series of identities satisfied by the binomial coefficients. Some are easy to prove, and some are difficult.
(

n

0

)

+

(

n

1

)

+

(

n

2

)

+

(

n

3

)

+ · · · +

(

n

n

)

= 2n (a)
(

n

0

)

−

(

n

1

)

+

(

n

2

)

−

(

n

3

)

+ · · · + (−1)n

(

n

n

)

= 0, n > 0 (b)

1

1

(

n

0

)

+
1

2

(

n

1

)

+
1

3

(

n

2

)

+
1

4

(

n

3

)

+ · · · +
1

n + 1

(

n

n

)

=
2n+1 − 1

n + 1
(c)

0

(

n

0

)

+ 1

(

n

1

)

+ 2

(

n

2

)

+ 3

(

n

3

)

+ · · · + n

(

n

n

)

= n2n−1 (d)

(

n

0

)2

+

(

n

1

)2

+

(

n

2

)2

+

(

n

3

)2

+ · · · +

(

n

n

)2

=

(

2n

n

)

(e)

(

n

0

)2

−

(

n

1

)2

+

(

n

2

)2

−

(

n

3

)2

+ · · · + (−1)n

(

n

n

)2

=

{

0 : n = 2m + 1

(−1)m
(

2m

m

)

: n = 2m
(f)

(

n

0

)

+

(

n

2

)

+

(

n

4

)

+

(

n

6

)

+

(

n

8

)

+

(

n

10

)

+ · · · = 2n−1, n > 0 (g)
(

n

1

)

+

(

n

3

)

+

(

n

5

)

+

(

n

7

)

+

(

n

9

)

+

(

n

11

)

+ · · · = 2n−1, n > 0 (h)

Relations (a) and (b) were proved earlier in this article (see Section 3).

Relations (c) and (d) can be proved by standard methods, but aquick proof is available if we use a trick from
calculus. We begin by noticing that the binomial theorem tells us that:

(1 + x)n =

(

n

0

)

+

(

n

1

)

x +

(

n

2

)

x2 + · · · +

(

n

n

)

xn.

If we take the derivative of both sides with respect tox, we obtain:

n(1 + x)n−1 =

(

n

1

)

+ 2

(

n

2

)

x + 3

(

n

3

)

x2 · · · + n

(

n

n

)

xn−1.

Substitute1 for x and we obtain relation (d).
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If we start from the same equation but integrate instead, we obtain:

(1 + x)n+1

n + 1
=

(

n

0

)

x +
1

2

(

n

1

)

x2 +
1

3

(

n

2

)

x3 + · · · +
1

n + 1

(

n

n

)

xn+1 + C,

whereC is a constant to be determined. Substitutingx = 0, we obtainC = 1/(n + 1), and then if we substitute
x = 1, we obtain relation (c).

If you don’t want to use calculus, here’s a different approach. For relation (d) note that:

k

(

n

k

)

=
kn!

(n − k)!k!
=

n(n − 1)!

(n − k)!(k − 1)!
= n

(

n − 1

k − 1

)

.

Then

0

(

n

0

)

+ 1

(

n

1

)

+ 2

(

n

2

)

+ 3

(

n

3

)

+ · · · + n

(

n

n

)

=

n

(

(

n − 1

0

)

+

(

n − 1

1

)

+ · · · +

(

n − 1

n − 1

)

)

= n2n−1.

Relation (c) can be proved similarly, starting from the factthat:

1

k + 1

(

n

k

)

=
1

n + 1

(

n + 1

k + 1

)

.

We’ll leave the proof as an exercise.

There are different ways to prove relation (e), but my favorite is a combinatorial argument. Since
(

n

k

)

=
(

n

n−k

)

we
can rewrite the sum of the squares of the binomial coefficients as:

(

n

0

)(

n

n

)

+

(

n

1

)(

n

n − 1

)

+

(

n

2

)(

n

n − 2

)

+ · · ·

(

n

n

)(

n

0

)

.

Now let’s consider a particular way to calculate
(

2n

n

)

. This just counts the number of ways to choosen items from
a set of2n. Imagine that we divide the2n items into two sets,A andB, each of which containsn items. If we
choose none of the items in setA, we have to choose alln from setB. If we choose1 item fromA we have to
choosen − 1 from B, and so on. In general, for each of the

(

n

k

)

ways we can choosek items from setA, there are
(

n

n−k

)

ways to choose the remaining items fromB, and this will add
(

n

k

)(

n

n−k

)

more ways to choosen items from
2n. Sum them up, and we obtain relation (e).

A more traditional way to do the calculation is as follows. First we note that:

(x + y)n =

(

n

0

)

xn +

(

n

1

)

xn−1y +

(

n

2

)

xn−2y2 + · · · +

(

n

n

)

yn

=

(

n

n

)

xn +

(

n

n − 1

)

xn−1y +

(

n

n − 2

)

xn−2y2 + · · · +

(

n

0

)

yn

If we multiply (x + y)n by itself, once represented by the first version above and once represented by the second,
we can see that the term containingxnyn will have a coefficient equal to the desired sum of products ofbinomial
coefficients. But this is just the same as the coefficient ofxnyn in the expansion of(x+ y)n(x+ y)n = (x+ y)2n,
and that is just

(

2n

n

)

.

Finally, a third way to see that the sum is correct is to consider a special case of counting routes through a grid that
we solved in Section 10.
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P5P5 BB

P1P1AA

P2P2

P3P3

P4P4

Figure 7: Routes in a
square grid

Consider a square grid such as the one displayed in Figure 7. In that figure there are
five horizontal and five vertical paths, but the argument we will make will not depend
on that. Suppose we want to count the number of paths from point A to pointB in that
figure. From the work we did in Section 10, we know that the number is

(

8

4

)

.

But any path fromA to B must pass through exactly one of the pointsP1, P2, . . . ,P5.
The number of paths fromA to B passing through pointPi is the number of paths from
A to Pi multiplied by the number of paths fromPi to B.

Again, using methods from Section 10, there are
(

4

0

)

paths fromA to P1 and
(

4

0

)

paths
from P1 to B. There are

(

4

1

)

paths fromA to P2 and
(

4

1

)

paths fromP2 to B, and so on.
Thus the total number of paths, which we know to be

(

8

4

)

, is:

(

4

0

)(

4

0

)

+

(

4

1

)(

4

1

)

+

(

4

2

)(

4

2

)

+

(

4

3

)(

4

3

)

+

(

4

4

)(

4

4

)

=

(

8

4

)

.

It should be clear that there is nothing special about a5 × 5 grid, and that the same argument can be used to count
paths throughany square grid, and this yields the result expressed in relation (e).

The second method that we used to compute relation (e) can be used to prove relation (f), and all we have to do is
to multiply (x − y)n by (x + y)n using the following two expansions:

(x + y)n =

(

n

0

)

xn +

(

n

1

)

xn−1y +

(

n

2

)

xn−2y2 + · · · +

(

n

n

)

yn

(x − y)n =

(

n

n

)

xn −

(

n

n − 1

)

xn−1y +

(

n

n − 2

)

xn−2y2 − · · · + (−1)n

(

n

0

)

yn

Again, the desired term will be the coefficient ofxnyn in the expansion of(x + y)n(x − y)n, but this is just
(x2 − y2)n. If n is odd, this coefficient is clearly zero, and ifn is even, sayn = 2m, then it is(−1)m

(

2m

m

)

.

The case wheren is odd is totally obvious since the values in Pascal’s triangle are symmetric, and there is no
middle term for oddn, so each term with a positive sign will be matched by the corresponding symmetric term
with a negative sign.

Relations (g) and (h) are easy to obtain. Consider the following two expansions:

(x + y)n =

(

n

0

)

xn +

(

n

1

)

xn−1y +

(

n

2

)

xn−2y2 + · · · +

(

n

n

)

yn

(x − y)n =

(

n

0

)

xn −

(

n

1

)

xn−1y +

(

n

2

)

xn−2y2 − · · · + (−1)n

(

n

n

)

yn

If we add the equations together, we obtain twice the sum in relation (g) and if we subtract them, we obtain twice
the sum in (h). Then simply setx andy to 1, and we see that the sumor difference is2n. Since this is twice the
desired result, we see that in both cases, the sum is2n−1.
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12 Harmonic Differences

Write down the fractions in the harmonic series:1/1, 1/2, 1/3, . . . , and in each row below that, calculate the
differences of the adjacent numbers. You will obtain a tablethat looks something like this:

1

1

1

2

1

3

1

4

1

5

1

6
· · ·

1

2

1

6

1

12

1

20

1

30
· · ·

1

3

1

12

1

30

1

60
· · ·

1

4

1

20

1

60
· · ·

1

5

1

30
· · ·

1

6
· · ·

If this table is rotated until the fraction1/1 is on top, and then if the top row is multiplied by1, the second row by
2, the third by3 and so on, we obtain a triangle that is exactly the same as Pascal’s triangle except that the numbers
are in the denomintors instead of the numerators. This is easy to prove if we simply write down the fractions in the
table above in terms of the binomial coefficients and show that they satisfy the difference equations. Following is
the table above written in that form.

(

1
(

0

0

))

−1 (

2
(

1

1

))

−1 (

3
(

2

2

))

−1 (

4
(

3

3

))

−1 (

5
(

4

4

))

−1 (

6
(

5

5

))

−1
· · ·

(

2
(

1

0

))

−1 (

3
(

2

1

))

−1 (

4
(

3

2

))

−1 (

5
(

4

3

))

−1 (

6
(

5

4

))

−1
· · ·

(

3
(

2

0

))

−1 (

4
(

3

1

))

−1 (

5
(

4

2

))

−1 (

6
(

5

3

))

−1
· · ·

(

4
(

3

0

))

−1 (

5
(

4

1

))

−1 (

6
(

5

2

))

−1
· · ·

(

5
(

4

0

))

−1 (

6
(

5

1

))

−1
· · ·

(

6
(

5

0

))

−1
· · ·

It is obvious that the first row is just the harmonic series, soall that needs to be shown is that successive entries in
the table can be obtained by subtracting the two entries above. This is equivalent to showing that for anyn andk:

1

(n + 1)
(

n

k

) −
1

(n + 2)
(

n+1

k+1

) =
1

(n + 2)
(

n+1

k

) .

If we write the binomial coefficients above in their factorial form, this is equivalent to:

(n + 2)k!(n − k)!

n!
−

(n + 1)(k + 1)!(n − k)!

(n + 1)!
=

(n + 1)k!(n + 1 − k)!

(n + 1)!
.

We can put everything over a common denominator ofn!:

(n + 2)k!(n − k)!

n!
−

(k + 1)!(n − k)!

n!
=

k!(n + 1 − k)!

n!
,

so since the denominators are the same, we are done if:

(n + 2)k!(n − k)! − (k + 1)!(n − k)! = k!(n + 1 − k)!
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k!((n + 2)(n − k)! − (k + 1)(n − k)!) = k!(n + 1 − k)!

k!(n + 2 − k − 1)(n − k)! = k!(n + 1 − k)!

k!(n − k + 1)(n − k)! = k!(n + 1 − k)!

k!(n + 1 − k)! = k!(n + 1 − k)!

13 Finding Formulas for Sequences

Suppose you come across the following sequence:

5, 7, 21, 53, 109, 195, 317, 481, . . . ,

and you would like to find a general formulaf(n) such thatf(0) = 5, f(1) = 7, f(2) = 21, f(3) = 53, and so
on. In many, many cases the following technique works.

5 7 21 53 109 195 317 481 . . .

2 14 32 56 86 122 164 . . .

12 18 24 30 36 42 . . .

6 6 6 6 6 . . .

0 0 0 0 . . .

First list the numbers in a line as in the table above, and on each successive line, write the difference of the pair of
numbers above it. This is sort of the opposite of what you do toform Pascal’s triangle. Continue in this way, and
if you are lucky, you will wind up with a line that remains constant (the line of6’s above), and then, if you were
to continue, the next line and every other line would be completely filled with zeros. (If this does not happen, then
the following technique will not work, although if you do finda pattern, other techniques may work.)

The example above happened to degenerate to all zeroes in thefifth line. This may occur in more or fewer lines.
The sequence1, 3, 5, 7, 9, . . . is all zeros on the third line, and other sequences may require more lines before they
degenerate to all zeroes.

This isn’t exactly a formula, but it does provide an easy method to compute successive values in the original list,
assuming the pattern continues. In this case, since the lineof 6’s continues, just add another6 to it. That means
that the number following the42 in the line above must be42 + 6 = 48. The same reasoning tells us that the
number following the164 must be164 + 48 = 212 and repeating the reasoning, the next number in our sequence
will be 481 + 212 = 693. We can repeat this as often as we like to obtain an arbitrary number of terms.

The most important thing to note is that the entire table is completely determined by the numbers on the left edge;
in this case they are:5, 2, 12 and6 followed by an infinite sequence of zeroes.

Although the method above will certainly work, it would still be painful to calculate the millionth term this way. It
would be much better to have an explicit formula for thenth term.

As we already observed, the generation of tables like those above is similar to what we do to obtain Pascal’s triangle
except that we subtract instead of add. Because of this it is not surprising that an explicit formula can be obtained
based on coefficients in Pascal’s triangle. We will simply state the method for obtaining such a formula and then
we will explore why it works. In fact, our formula will use only the numbers on the left edge of our table (which,
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as we observed, generate the entire table). In the example, they are5, 2, 12, 6, 0, 0, . . .. Here is the formula:

5

(

n

0

)

+ 2

(

n

1

)

+ 12

(

n

2

)

+ 6

(

n

3

)

+ 0

(

n

4

)

+ 0

(

n

5

)

+ · · ·

Obviously once we arrive at the infinite sequence of zeros, none of the remaining terms will contribute anything,
so the formula above really only has four non-zero terms. In its current state the formula is correct, but it can be
simplified with a bit of algebra:

f(n) = 5

(

n

0

)

+ 2

(

n

1

)

+ 12

(

n

2

)

+ 6

(

n

3

)

f(n) = 5 · 1 + 2 · n + 12 ·
n(n − 1)

2
+ 6 ·

n(n − 1)(n − 2)

6

f(n) = 5 + 2n + 6(n2 − n) + (n3 − 3n2 + 2n)

f(n) = n3 + 3n2 − 2n + 5.

You can check that this formula is correct by plugging in different values forn and verifying thatf(0) = 5,
f(1) = 7, f(2) = 21, and so on.

The method seems to work great, but why? One way to see this is to apply the method to a diagonal of Pascal’s
triangle wheref(x) =

(

n

3

)

. (There is nothing special about this row except that it is the most complex part of the
formula we generated for the example above.) We will make thesensible assumptions that

(

0

3

)

=
(

1

3

)

=
(

2

3

)

= 0.
In other words there is no way to choose3 objects from a set consisting of zero, one or two objects. Here is a table
of successive differences with

(

n

3

)

as the top row:

0 0 0 1 4 10 20 35 . . .

0 0 1 3 6 10 15 . . .

0 1 2 3 4 5 . . .

1 1 1 1 1 . . .

0 0 0 0 . . .

What jumps out is that this is just a part of Pascal’s triangleon its side. Each successive row in the table is another
diagonal in Pascal’s triangle. If you look at how the numbersare generated, it is obvious why this occurs, and that
no matter what diagonal of the triangle you begin with, a similar pattern will occur.

Note also that the “generating pattern” of numbers on the left of the table is, in this case,0, 0, 0, 1, 0, 0, . . .. Thus
0, 0, 0, 1, 0, 0, . . . generates the row

(

n

3

)

. If we had begun with the row
(

n

2

)

, the corresponding generating pattern
would have been0, 0, 1, 0, 0, . . ., or for

(

n

5

)

, it would have been0, 0, 0, 0, 0, 1, 0, 0, . . . and so on.

If the generating pattern for some sequence were0, 1, 0, 0, 1, 0, 0, . . ., it should be clear that the initial line will
look like:

0 ·

(

n

0

)

+ 1 ·

(

n

1

)

+ 0 ·

(

n

2

)

+ 0 ·

(

n

3

)

+ 1 ·

(

n

4

)

.

Also note that if we had multiplied every term in the top row bya constant, then every row of successive differences
would be multiplied by the same constant, and the final pattern will simply have that constant in the approprite
spots in the list of numbers on the left of the table. Thus our technique of multiplied the appropriate coefficient of
Pascal’s triangle by the constant in that row and summing them should yield a formula for the sequence.
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As a final example, let’s work out a formula for the following sum:

f(n) = 03 + 13 + 23 + 33 + · · · + n3.

We can work out the first few values by hand, and using our method, obtain the following table. (Note the interest-
ing fact that all the numbers in the first row happen to be perfect squares.)

0 1 9 36 100 225 441 784 . . .

1 8 27 64 125 216 343 . . .

7 19 37 61 91 127 . . .

12 18 24 30 36 . . .

6 6 6 6 . . .

0 0 0 . . .

According to our analysis, the result should be:

f(n) = 0 ·

(

n

0

)

+ 1 ·

(

n

1

)

+ 7 ·

(

n

2

)

+ 12 ·

(

n

3

)

+ 6 ·

(

n

4

)

.

If we apply some algebra, we obtain:

f(n) = 0

(

n

0

)

+ 1

(

n

1

)

+ 7

(

n

2

)

+ 12

(

n

3

)

+ 6

(

n

4

)

f(n) = 0 · 1 + 1 · n + 7 ·
n(n − 1)

2
+ 12 ·

n(n − 1)(n − 2)

6
+ 6 ·

n(n − 1)(n − 2)(n − 3)

24

f(n) = 0 + n + 7
(n2 − n)

2
+ 2(n3 − 3n2 + 2n) +

n4 − 6n3 + 11n2 − 6n

4

f(n) =
4n

4
+

14n2 − 14n

4
+

8n3 − 24n2 + 16n

4
+

n4 − 6n3 + 11n2 − 6n

4

f(n) =
n4 − 2n3 + n2

4
=

(

n(n + 1)

2

)2

.

The result above may be more familiar as:

03 + 13 + 23 + · · ·n3 = (0 + 1 + 2 + · · · + n)2

since1 + 2 + 3 + · · ·n = n(n + 1)/2.

21



1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1

1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1

1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

2
2


