Exploring Pascal’s Triangle

Tom Davis
tomrdavis@earthlink.net
http://www.geometer.org/mathcircles
November 27, 2006

Abstract

This article provides material to help a teacher lead a ¢laas adventure of mathematical discovery using
Pascal’s triangle and various related ideas as the topiereTis plenty of mathematical content here, so it can
certainly be used by anyone who wants to explore the subjettpedagogical advice is mixed in with the
mathematics.

1 General Hints for Leading the Discussion

The material here should not be presented as a lec-

ture. Begin with a simple definition of the triangle L 1\

and have the students look for patterns. When they 1 1

notice patterns, get them to find proofs, when pos- N N\

sible. By “proof” we do not necessarily mean a 1 2 1

rigorous mathematical proof, but at least enough of 1/ N 3/ N 3/ N 1

an argument that it is convincing and that could, in

principle, be extended to a rigorous proof. Some 1'/ N 4/ N 6/ N 4'/ N 1

sample arguments/proofs are presented below, but N O\ 6/ NN\ SN\
5 1 10 5 1

they represent only one approach; try to help the 1
students find their own way, if possible.

It is not critical to cover all the topics here, or to

cover them in any particular order, although the or- Figure 1: Pascal’s Triangle

der below is reasonable. It is important to let the

investigation continue in its own direction, with perhapgtée steering if the class is near something very inter-
esting, but not quite there.

The numbers in Pascal’s triangle provide a wonderful exaraphow many areas of mathematics are intertwined,
and how an understanding of one area can shed light on otbas.afhe proposed order of presentation below
shows how real mathematics research is done: it is not @btriae; one bounces back and forth among ideas,
applying new ideas back to areas that were already coveneddsg new light on them, and possibly allowing
new discoveries to be made in those “old” areas.

Finally, the material here does not have to be presentediirgesession, and in fact, multiple sessions might be
the most effective presentation technique. That way teex@ne review, and the amount of new material in each
session will not be overwhelming.

2 Basic Definition of Pascal’s Triangle

Most people are introduced to Pascal’s triangle by means affaitrary-seeming set of rules. Begin with @n
the top and withl's running down the two sides of a triangle as in figure 1. Ealfitonal number lies between



two numbers and below them, and its value is the sum of the twobers above it. The theoretical triangle is

infinite and continues downward forever, but only the firsing@$ appear in figure 1. In the figure, each number
has arrows pointing to it from the numbers whose sum it is. éows of Pascal’s triangle are listed on the final

page of this article.

A different way to describe the triangle is to view the firgidiis an infinite sequence of zeros except for a single
1. To obtain successive lines, add every adjacent pair of eusrdnd write the sum between and below them. The
non-zero part is Pascal’s triangle.

3 Some Simple Observations

Now look for patterns in the triangle. We're interested iemgithing, even the most obvious facts. When it's easy
to do, try to find a “proof” (or at least a convincing argumeth@}t the fact is true. There are probably an infinite
number of possible results here, but let’s just look at a faeluding some that seem completely trivial. In the

examples below, some typical observations are in bold#fgoe, and an indication of a proof, possibly together
with additional comments, appears afterwards in the staifdat.

All the numbers are positive. We begin with only a positivé, and we can only generate numbers by including
additionall’s, or by adding existing positive numbers. (Note that teisdally an inductive proof, if written out
formally.)

The numbers are symmetric about a vertical line through the pex of the triangle. The initial row with a
single1 on it is symmetric, and we do the same things on both sidespa@Ver a number was generated on
the left, the same thing was done to obtain the correspomdingber on the right. This is a fundamental idea in
mathematics: if you do the same thing to the same objectsggbthe same result.

Look at the patterns in lines parallel to the edges of the triamgle. There are nice patterns.The one that is
perhaps the nicest example is the one that goes:

1,3,6,10,15,21,. ..

These are just the sumét), (1 +2), (1 +2+ 3), (1 +2+ 3+ 4), et cetera. A quick examination shows why
the triangle generates these numbers. Note that they atisoes called “triangular numbers” since if you make
an equilateral triangle of coins, for example, these nusbeunt the total number of coins in the triangle. In fact,
the next row:

1,4,10,20,35,...

are called the “pyramidal numbers”. They would count the hanof, say, cannonballs that are stacked in trian-
gular pyramids of various sizes. Is it clear why adding fgalar numbers together give the pyramidal numbers?
Is it clear how Pascal’s triangle succeeds in adding thagtér numbers in this way? In the same vein, if those
rows represent similar counts in 2 and 3 dimensions, shdutun first two rows somehow represent counts of

something in 0 and 1 dimensions? They do — and this is couldrieeasegue into the behavior of patterns in 4

and higher dimensions.

If you add the numbers in a row, they add to powers of 2.If we think about the rows as being generated from
an initial row that contains a singleand an infinite number of zeroes on each side, then each numaejiven
row adds its value down both to the right and to the left, seatively two copies of it appear. This means that
whatever sum you have in a row, the next row will have a sumithdouble the previous. It's also good to note
that if we number the rows beginning with rawinstead of rowl, then rown sums to2™. This serves as a nice
reminder that:® = 1, for positive numbers.



If you alternate the signs of the numbers in any row and then ad them together, the sum i0. This is easy

to see for the rows with an even number of terms, since sonok gxperiments will show that if a number on the
left is positive, then the symmetric number on the right Wwélnegative, as int — 5+ 10 — 10 + 5 — 1. One way

to see this is that the two equal numbers in the middle wilehgpposite signs, and then it's easy to trace forward
and back and conclude that every symmetric pair will haveosite signs.

It's worth messing around a bit to try to see why this mightkvar rows with an odd number. There are probably
lots of ways to do it, but here’s a suggestion. Look at a tylpioa, like the fifth:

+1 -5 +10 —10 +5 —1.
We'd like the next row (the sixth, in this case) to look likésth
+1 -6 +15 —20 +15 —6 + 1.
If we give letter names to the numbers in the row above it:
a=+1;b=—-5;¢=+10;d = —10;e = +5; f = —1,

then how can we write the elements in révn terms of those in rov#? Here’s one nice way to do it:

+1=a-0;-6=b—a;+15=c—b;-20=d—c¢c;+15=e—d;—6=f —e;+1=0— f.
Now just add the terms:

a—04+b—a+c—-b+d—c+e—d+f—e+0-—F,

and the sum is obviously zero since each term appears twit®jith opposite signs.

The “hockey-stick rule”: Begin from any 1 on the right

edge of the triangle and follow the numbers left and down

for any number of steps. As you go, add the numbers you
encounter. When you stop, you can find the sum by taking

a 90-degree turn on your path to the right and stepping
down one.lt is called the hockey-stick rule since the numbers
involved form a long straight line like the handle of a hockey
stick, and the quick turn at the end where the sum appears is.
like the part that contacts the puck. Figure 2 illustrates tw

of them. The upper one addst+ 1 + 1 + 1 + 1 to obtain5,

and the other adds + 4 + 10 + 20 to obtain35. (Because Figure 2: The Hockey Stick
of the symmetry of Pascal’s triangle, the hockey sticks doul

start from the left edge as well.)

To see why this always works, note that whichevgou start with and begin to head into the triangle, therelis a
in the other direction, so the sum starts out correctly. Tiete that the number that sits in the position of the sum
of the line is always created from the previous sum plus tlemember.

Note how this relates to the triangular and pyramidal numbédfr we think of pyramids as “three-dimensional
triangles” and of lines with, 2, 3,4, . . . items in them as “one dimensional triangles”, and singlmgas a “zero-
dimensional triangle”, then the sum of zero-dimensioriahgles make the one dimensional triangles, the sum of
the one-dimensional trinagles make the two-dimensiofaigtes and so on. With this interpretation, look at the
diagonals of Pascal’s triangle as zero, one, two, thredjmensional triangles, and see how the hockey-stick rule
adds the items in each diagonal to form the next diagonalactixthe manner described above.



There are interesting patterns if we simply consider
whether the terms are odd or evenSee figure 3. In the
figure, in place of the usual numbers in Pascal’s triangle
we have circles that are either black or white, depending
upon whether the number in that position is odd or even,
respectively.

Look at the general pattern, but it is also interesting to
note that certain rows are completely black. What are
those row numbers? They are rod , 3,7, 15, 31, and

each of those numbers is one less than a perfect power of
2.

How could you possibly prove this? Well, one approach
is basically recursive: Notice the triangles of even num-
bers with their tips down. Clearly, since adding evens
yields an even, the interiors will remain even, but at the
edges where they're up against an odd number, the width
will gradually decrease to a point. Now look at the lit- Figure 3: Odd-Even Pascal’s Triangle

tle triangle made from the four rowisthrough3. At the

bottom, you've got all odd numbers, so the next line will

be all even, except for the other edges. The outer edges oulslike two copies of the initial triangle until they
meet. Once you've got all odd, we now have the shape of thegieamade of the first 8 rows, and the next step is
two odds at the end, with evens solidly between them. Thenaegtirepeats, but with triangles of twice the size,
et cetera.

There’s nothing special about odd-even; the same sortsesiigations can be made looking for multiples of other
numbers.

The Fibonacci sequence is hidden in Pascal’s tri-
angle.

See figure 4. If we take Pascal’s triangle and draw
the slanting lines as shown, and add the numbers
that intersect each line, the sums turn out to be the
values in the Fibonacci series:

1,1,2,3,5,8,13,21, 34, 55,89, 144, 233, 377, . . .

/\/\1{\16/\

The first two numbers areand every number after
that is simply the sum of the two previous numbers.

QO O1TWN PP -

One argument to convince yourself that this is true
Figure 4: Fibonacci Series is to note that the first two lines are OK, and then
to note that each successive line is made by com-
bining exactly once, each of the numbers on the
previous two lines. In other words, note that the sums satisctly the same rules that the Fibonacci sequence
does: the first two sums are one, and after that, each sum datelgreted as the sum of the two previous sums.



4 Pascal’s Triangle and the Binomial Theorem

Most people know what happens when you raise a binomial égertpowers. The table below is slightly unusual
in that coefficients of are included since it will be the coefficients that are of @iynimportance in what follows:

(L+R)" = 1

(L+ R} = 1L+1R

(L+R)?* = 1L*+2LR+1R?

(L+R)* = 1L*+3L°R+3LR*+1R°

(L+R)* = 1L*+4L°R+6L*R? +4LR® 4+ 1R*

(L+R)® = 1L° +5L*R+10L3R* + 10L*R® + 5LR* + 1R®

A quick glance shows that the coefficients above are exawtl\shme as the numbers in Pascal’s triangle. If this
is generally true, it is easy to expand a binomial raised taraitrary power. If we want to deal witfl + R)",

we use as coefficients the numbers in rewf Pascal’s triangle. (Note again why it is convenient tagrsshe
first row the number zero.) To the first coefficient, we asdignand for each successive coefficient, we lower the
exponent orl and raise the exponent @ (Note that we could have said, “assigit R to the first coefficient.)
The exponent o will reach0 and the exponent oR will reachn just as we arrive at the last coefficient in row
n of Pascal’s triangle.

OK, but why does it work? The easiest way to see your way thrdaga proof is to look at a couple of cases
that are not too complex, but have enough terms that it's teasge patterns. For the example here, we’ll assume
that we've successfully arrived at the expansionlof+ R)* and we want to use that to compute the expansion of
(L + R)".

The brute-force method of multiplication from the algebreldss is probably the easiest way to see what'’s going
on. To obtainL + R) from (L + R)*, we simply need to multiply the latter kY. + R):

I* + 4AL3R + 6L?R? + 4LR® + R*
L + R
L*R + 4L3R2 + 6L?°R® + 4LR* + RS (1)
L° 4+ 4L*R + 6L3R? + 4AL?R3 + LR*
L5 + 5L*R + 10L®R?> + 10L°R® + G5LR* + R®

In the multiplication illustrated in equation (1) we seettte expansion fofL + R)* is multiplied first byR, then

by L, and then those two results are added together. Multiicdty R simply increases the exponent &by

one in each term and similarly for multiplication ly In other words, before the expressions are added, they have
the same coefficients; the only thing that has changed aneathes of the exponents.

But notice that the two multiplications effectively shifte rows by one unit relative to each other, so when we
combine the multiplications of the expansion(éf+ R)* by L and R, we wind up adding adjacent coefficients.
It's not too hard to see that this is exactly the same methodsed to generate Pascal’s triangle.

But once we're convinced that the binomial theorem works,car use it to re-prove some of the things we
noticed in section 3. For example, to show that the numbemsvim of Pascal’s triangle add @, just consider
the binomial theorem expansion @f + 1)”. The L and theR in our notation will both bel, so the parts of the
terms that look likeL.*R™ are all equal td. Thus(1 + 1)™ = 2™ is the sum of the numbers in rowof Pascal's
triangle. Similarly, to show that with alternating signg tsum is zero, look at the expansion(of— 1) = 0.



5 An Application to Arithmetic

A possible introduction to the previous section might beaweenhthe class look at powers bf:

11 = 1

111 = 11

112 = 121
113 = 1331
114 = 14641
11° = 161051
115 = 1771561

It's interesting that up to the fourth power, the digits ire thnswer are just the entries in the rows of Pascal’s
triangle. What is going on, of course, is thidt = 10 + 1, and the answers are jugto + 1), for variousn.
Everything works great until the fifth row, where the entiie®ascal’s triangle get to b or larger, and there is

a carry into the next row. Although Pascal’s triangle is leiddt does appear in the following sense. Consider the
final number,11°:

(10+1)° = 10 = 1000000
+ 6-105 = 600000

+ 15-10* = 150000

+ 20-10® = 20000

+ 15-10% = 1500

+ 6-100 = 60

+ 1-10° = 1

= 1771561

By shifting the columns appropriately, the numbers in arny of Pascal’s triangle can be added to calculat®,
by using the numbers in row.

Could similar ideas be used to calculatd™ or 1001™?

6 Combinatorial Aspects of Pascal’s Triangle

Before going into the theory, it's a good idea to look at a femmarete examples to see how one could do the
counting without any theory, and to notice that the countoitain from a certain type of problem (called “com-
binations”) all happen to be numbers that we can find in Padcingle.

Let's start with an easy one: How many ways are there to chvas@bjects from a set of four? It doesn'’t take
too long to list them for some particular set, spy, B,C, D}. After a little searching, it appears that this is a
complete list;

AB, AC,AD,BC,BD,CD.

The first time students try to count them, it’s unlikely thay’ll come up with them in a logical order as presented
above, but they’ll search for a while, find six, and after sduatiée searching, they’ll be convinced that they've got
all of them. The obvious question is, “How do ykmow you've got them all?”



There are various approaches, but one might be somethsgWe’ll list them in alphabetical order. First find all
that begin withA. Then all that begin wittB, and so on.”

Try a couple of others; say, 3 objects from a set of 5. The sétisB, C, D, E} and here are the 10 possible
groups of objects (listed in alphabetical order):

ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE,CDE

Note that the strategy still works, but we have to be carefdeseven while we're working on the part where we
find all triples that start with4, we still have to find all the pairs that can follow. Note thaisthas, in a sense,
been solved in the previous example, since if you know yduaginning withA, there are four items left, and the
previous exercise showed us that there are six ways to do it.

Now count the number of ways to choose 2 items from a set of fiee. the same sefA, B, C, D, E}, and here
are the 10 results:
AB,AC,AD,AE,BC,BD,BE,CD,CE,DE

Is it just luck that there are the same number of ways of gggiitems from a set 0 and2 items from a set 05?

A key insight here is that if | tell you which ones I'mot taking, that tells you which onesam taking. Thus for
each set of items, | can tell you whict2 they are, or, whicl3 they aren’t! Thus there must be the same number
of ways of choosin@ from 5 or 3 from 5.

Obviously, the same thing will hold for any similar situatidhere are the same number of ways to gitkhings
out of 17 as there are to pick out of 17, and so on. This is the sort of thing a mathematician would'dahlity”.
The general statement is this: There are the same numbersftvahoosé: things fromn as there are to choose
n — k things fromn, assuming that < n.

After you've looked at a few simple situations, it's easy &t g lot of other examples. The easiest is: How many
ways are there to pickitem from a set of,? The answer is obviousty. And from the previous paragraphs, there
are alsaon ways to choose — 1 items from a set of..

A slightly more difficult concept is this: How many ways areté to choose (zero) items from a set of. The
correct answer is alwayks— there is a single way to do it: just pick nothing. Or anothaywo look at it is that
there’s clearly only one way to choose alitems from a set ofi: take all of them. But the duality concept that
we've just considered would imply that there are the sametovapoose: items fromn as0 items fromn.

After looking at a few of these, we notice that the counts wiaiolare the same as the numbers we find in Pascal’s
triangle. Not only that, but, at least for the few situatiovesve looked at, the number of ways to chodsthings
from a set ofn seems to be the number in colurhar{starting the column count from zero) and in rew{again,
starting the row count from zero). The only entry that migters a little strange is the one for row zero, column
zero, but even then, it ought to hesince there’s really only one way to choose no items fromraptg set: just
take nothing.

With this encouragement, we can try to see why it might be tha¢ combinations and the numbers in Pascal's
triangle are the same.

First, a little notation. In order to avoid saying over aneogomething like, “the number of ways to chodse
objects from a set of. objects”, we will simply say # choosek”. There are various ways to write it, buts!
choosek)” works, with the parentheses indicating a grouping. Thesins@mmon form, of course, is that of the
binomial coefficient:(Z), which will turn out to be the same thing. So from our previawsk, we can say thab(
choose2) = (5 choosed) = 10, or, alternatively(3) = (3) = 10.

Here’s one way to look at it: We’'ll examine a special case aelwghy it works. Then, if we look at the special
numbers we've chosen, we'll see that there is nothing spatiall about them, and the general case is just a



particular example.

Suppose we need to find out how many ways there are to chbtsags from a set of7, and let's say that
we've already somehow worked out the counts for all simitafems for sets containirgjor fewer objects. For
concreteness, let's say that the set diings is{ A, B, C, D, E, F, G}. If we consider the sets of four items that
we can make, we can divide them into two groups. Some of thdhtaritain the membed (call this group 1)
and some will not (group 2).

Every one of the sets in group 1 has Amplus three other members. Those additional three membess leu
chosen from the setB, C, D, E, F, G} which has six elements. There afeghoose3) ways to do this, so there
are 6 choose3) elements in group 1. In group 2, the elemdntoes not appear, so the elements of group 2 are alll
the ways that you can choo$éems from a set of the remainirigobjects. Thus there aré ¢hooset) ways to do
this. Thus:

(7 choose 4) = (6 choose 3) + (6 choose 4)

TN _ (6}, (¢

4)  \3 4)
Now there’s clearly nothing special abduand4. To work out the value ofr{ choosek) we pick one particular
element and divide the sets into two classes: one of submetaining that element and the other of subsets that do

not. There arer{ — 1 choosek — 1) ways to choose subsets of the first type amd-(1 choosek) ways to choose
subsets of the second type. Add them together for the result:

or, using the binomial coefficients:

(n choose k) = (n — 1 choose k — 1) + (n — 1 choose k)

n\y (n-—1 n n—1

k) \k-1 k)
If we map these back to Pascal’s triangle, we can see thatatim@yntexactly to our method of generating new
lines from previous lines.

or:

7 Back to the Binomial Theorem

Now, let's go back to the binomial theorem and see if we canesmw interpret it as a method for choosing “
items from a set of”.

Multiplication over the real numbers is commutative, in femse thal. R = RL — we can reverse the order of
a multiplication and the result is the same. If we were to doudtiplication of a binomial by itself in a strictly
formal way, the steps would look like this:

(L+R)(L+R) = L(L+R)+R(L+R)
= LL+ LR+ RL+RR
= LL+LR+LR+RR
= LL+2LR+ RR.

The first step uses the distributive law; the next uses theldlisve law again, then we use the commutative law
of multiplication to change th& L to L R, and finally, we can combine the two copies/aR to obtain the product



in the usual form — well, usual except that we've writteh and RR instead ofL? and R? for reasons that will
become clear later.

But suppose for a minute that we cannot use the commutativeflanultiplication (but that we can rearrange the
terms, so that additioirs commutative). Using the distributive law we can still dotalk multiplications needed to
generaté L + R)™, but we will wind up with a lot of terms that cannot be combinbtdfact, none of them can be
combined, and L + R)™ will contain 2" terms. We can computd. + R)"*! by multiplying out the expanded
form of (L + R)™ by one additiona(L + R). The calculation above shows the resul{ 6f+ R)?; we’'ll use that
to generatéL + R):
(L+R)?® = (L+R)(L+ R)?

= (L+R)(LL+ LR+ RL+ RR)

= L(LL+LR+RL+ RR)+ R(LL+ LR+ RL+ RR)

= LLL+LLR+LRL+LRR+ RLL+ RLR+ RRL+ RRR.

Without going through the detailed calculations that wedusigove, but using the same method, here is what we
would obtain for(L + R)*:

(L+R)* = LLLL+ LLLR+ LLRL+ LLRR+ LRLL+ LRLR+ LRRL+ LRRR +
RLLL+ RLLR+ RLRL+ RLRR+ RRLL+ RRLR+ RRRL + RRRR.

Notice that in our expansions in this mannetbf+- R)?, (L + R)3 and(L + R)*, the results are simply all possible
arrangements df, 3 or4 R’s andL’s. It's easy to see why. If we multiply out something like:

(L+R)(L+ R)(L+ R)(L + R)

we are basically making every possible choice of one of theitweach set of parentheses, and since theré are
choices per group antigroups, there ar2* = 16 possible sets of choices.

Now, when we do have commutativity, we convert terms BkBRL to L2R? throughout, and then combine like
terms. Let’s do that, but in the opposite order: first, wedinbine the terms we know will result in the same value,
as shown below. Groups with the same numbeR'sfandL’s are enclosed in parentheses:

(L+R)* = (LL)+ (LR+ RL)+ (RR)
(L+R)* = (LLL)+ (LLR+ LRL+ RLL)+ (LRR+ RLR+ RRL)+ (RRR)
(L+R)* = (LLLL)+ (LLLR+ LLRL+ LRLL+ RLLL)+
(LLRR+ LRLR+ LRRL+ RLLR + RLRL + RRLL) +
(LRRR+ RLRR+ RRLR + RRRL) + (RRRR).

The groups above have sizd$; 2, 1], then[1, 3, 3, 1], then[1, 4, 6,4, 1]. These are the numbers in ro&s3 and
4 of Pascal’s triangle. Stop for a second and look closely egdtgrouped terms to see if there is some way to
interpret them as{ choosek).

Here is one way. Look at the largest group: the six terms Wiftis and2 L’s in the expansion of L + R)*:
(LLRR+ LRLR+ LRRL+ RLLR+ RLRL + RRLL).

If we interpret the four letters as indicating positionsatfifitems in a set, then ahmeans “choose the item” and
an R means “do not choose it”. ThusL RR means to take the first two and omit the second tiRé;L. R means
to take the second and third items only, and so on.



Clearly, since all the possibilities appear here, the nurobterms ) is exactly the same as the number of ways
that we can choos items from a set oft. When the commutative law of addition is applied to thesenggr
since they all hav@ R’'s and2 L’s, all will becomeL?R?, and since there agof them, the middle term of the
expansion of L + R)* will be 6L R?.

Again, there’s nothing special about the middle term of tka@sion using the fourth power; the same arguments
can be used to show thatery term inevery binomial expansion can be interpreted in its combinatsealse.

8 Statistics: The Binomial Distribution

In the previous section (Section 7) we looked at the pattefris and R that related to raising a binomial to a
power: (L + R)™. If we are instead looking at a game that consists of flippingian times, and are interested in
the patterns of “heads” and “tails” that could arise, it wilin out that if we just substitutel™ for “ L” and “H”
for “ R” then we will have basically described the situation.

Consider flipping a fair coin (a coin that has equal chancésafing “heads” or “tails” which we will denote from
now on as ‘H” and “T™) 3 times. If we indicate the result of such an experiment #wee-letter sequence where
the first is the result of the first flip, the second represdr@second, and so on, then here are all the possibilities:

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT. )

Note that this (except for thet” signs) is exactly what we would get if we do the multiplicatibelow without
having the commutative law as we did in the expansiorg.of R)* and(L + R)* in Section 7:

(H+T)*=HHH+ HHT + HTH + HTT + THH + THT + TTH + TTT.

There is no reason to believe, since the coin is fair, thatoditlye patterns in 2 is any more or less likely than any
other, and if the only thing you are interested in is the nunoibéheads”, then you can see thHtH H andTTT
both occur once, while results with one “head” occurs thirees and similarly for results with two “heads”. Thus,
if you were to repeat the experiment of doing three coin flipghe long run, the ratio of times the experiment
yielded zero, one, two or three “heads” would be roughly mrdtio of1 : 3: 3 : 1.

Recall that in Section 7 we also interpreted the expansiqd.of R)" as listing selections of or R from each
term when they are written like this:

(L+R)"=(L+R)(L+R)(L+R)---(L+R).
But selecting arl. or R is like telling whether the coin came up “heads” or “tails"@ach of the terms.

There is nothing special about three flips, obviously, sheféxperiment is to do flips, then there ar2™ possible
outcomes, and if all you care about is the number of tiffiesccurred, and not on the actual order of fhand
H results that generated it, then there g} ways to obtain zero “heads(}) ways to obtain one “head”, and in
general,(}) ways to obtain exactly “heads”.

In probability terms, the probability of obtaining exactiyheads im flips is:

1 (n

2m\k)
What if your experiment is not with fair coins, but rather paeated test where the odds are the same for each test?
For example, suppose the game is to roll a singlexdienes, and you consider it a win iflaoccurs, but a loss if
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2,3, ...,6 occurs? Thus you win, on average, one time in six, or eqemtit, with a probability ofl /6. If you
repeat the rolling: times, what is the probability of getting exaciywins in this situation?

We can describe any experiment like this by labeling the g@bdlty of success ag and the probability of failure
asq such thap + ¢ = 1 (in other words, you either win or lose — there are no othesibi#ies). For flipping a
fair coin,p = ¢ = 1/2; for the dice experiment described abopes 1/6 andg = 5/6.

The analysis can begin as before, where we just list the lplessutcomes. UsingWW” for “win” and “ L” for
“lose”, the results of three repeats are the familiar:

WWW,WWL,WLW,WLL, LWW, LWL, LLW, LLL.

But the chance of getting & is now different from the chance of gettingla What is the probability of getting
each of the results above. For any particular set,/Sa%L, to obtain that, you first lose (with probability then
you win (with probabilityp) and then you lose again (with probabilitagain). Thus the chance that that particular
result occurs igpg. For the three-repeat experiment, the chances of 0, 1, 2 avids3(P(0), P(1), P(2) and
P(3)) are given by:

P0) = qqq=¢"
P(1) = pqq+ qpq+ qqp = 3pq>
P(2) = ppq+ pap+ qpp = 3p°q
P(3) = ppp=p°

Notice that there’s nothing special about repeating theegrgent three times. If the experiment is repeated
times, the probability of obtaining exacttywins is given by the formula:

P(k) = <Z>pkq"k-

Thus if you roll a fair die7 times, the probability that you will obtain exactywins is given by:

7 /1N2/5\5 21-1-3125 65625
P(2) = (—) (—) - _ ~ 0.23442
(2) (2> 6) \& 570036 279936 - V2344286

Finally, note that there’s no need for the same experimebeteepeated. If you take a handful of ten coins and
flip them all at once, the odds of getting, say, exactly fouadseis the same as the odds of getting four heads in
ten individual flips of the same coin. Just imagine flipping finst, then the second, and so on, and leaving them
in order on the table after each flip.

9 Back to Combinatorics

OK, now, in principle, we can calculate any binomial coeéfitti simply using addition over and over to obtain the
entries in the appropriate row of Pascal’s triangle. If yeed a number liked6 choosel 1), however, this would
take along time, starting from scratch. The goal of this section is tovsthat:

(n choose k) = (Z) - W%lk)'
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As before, the best way to begin is with a concrete examptbwaill use ¢ choose3). One approach is to think
about it this way: There areways to choose the first object, and after that is chasamays to choose the second
(since one is already picked) and finallyvays to choose the last one. So there shouldl k& x 2 = 24 ways to
do it. This, of course, conflicts with our previous resultttilachoosed) = 4, so what'’s going on?

Let's again use the sétd, B, C, D} as the set of four objects. If we make the 3 x 2 choices as above, here are
the sets we obtain (in alphabetical order, to be certain eveiwitted nothing):

ABC ABD ACB ACD ADB ADC
BAC BAD BCA BCD BDA BDC
CAB CAD CBA CBD CDA CDB
DAB DAC DBA DBC DCA DCB

The problem becomes obvious: we've included lots of grobpsare identicalABC = ACB = BAC and so
on. We want to count groups where the ordering doesn’'t mattdrwe've generated groups that have an order.
Let's regroup the list above so that each row contains omfpks rearrangements of the same items:

ABC ACB BAC BCA CAB C(CBA
ABD ADB BAD BDA DAB DBA
ACD ADC CAD CDA DAC DCA
BCD BDC CBD CDB DBC DCB

Notice that each appears exadilyimes, so the numbe&4 we obtained has counted each sulssiétnes. To find
the true number of subsets, we have to didddy 6 and we obtain the correct answér,

How many rearrangements are therg adems? Well, the first can be any ®fthen there remaif choices for the
second, and the final item is determined. The resditi2 x 1 = 3! = 6. Similarly, there ard x 3 x 2 x 1 =24
rearrangements dfitems and so on.

As before, there’s nothing special about this method toutate ¢ choose3). If we want to find out how many
combinations there are @&fthings from a set of,, we say that the first can be any:fthe second any of — 1,
and so on, fok terms. But when we do this, we’ll obtain every possible r@agement of thosk terms so we will
have counted each ok — 1)(k —2)---3-2-1 = k! times.

Putting this together, we obtain a simple method to do thewtation. Here are a couple of examples:

7 7-6-5-4
(7choose4)—<4> = 74.3'2'1—35
9 9-8-7
(9 choose 3) = (3) = 331 =84
11 11-10-9-8-7
11 ch = = —— =462
(11 choose 5) (5> 13,91 6

Notice how easy this is. If you're choosirgthings from a set ofi, start multiplying the numberns, n — 1, and
so on fork terms, and then divide by theterms ofk!. If we count carefully, we can see that the general formula

looks like this:
(n) nn—1)(Mn-2)---(n—k+1)

k

- !

The form above is a little inconvenient to use mathematidadicause of the numerator, but notice that we can
convert the numerator to a pure factorial if we multiply it thle rest of the way down, which is to say, multiply

12



the numerator byn — k)(n —k —1)---3-2-1 = (n — k)!. So multiply both numerator and denominator of the
equation above byn — k)! to obtain the result we wanted:

(Z) B k'(+lk)' (3)

If you need to do an actual calculation of this sort, use tts form, since massive canceling will occur. In the
example:

5 5-4-3-2-1

we can cancel th&0 in the numerator by thg and2 in the denominator. Thé in the denominator cancels te
upstairs to &, and the3 similarly cancels with thé® yielding 3, and the problem reduces to:

11 11-10-9-8-7
(1lchoose5):< ):—

= 462.

11 11-3.2.
(11 choose 5) = (5> :#

The form in equation 3 is much easier to calculate with algielatly. For example, if we took this as the definition
of the terms in Pascal’s triangle, we could show that eachisogbtained from the previous by adding the two

above it if we could show that:
n\y [(n-— 1 n n—1
k) k k—1)

Just for the algebraic exercise, let's do this calculatiprcdnverting the terms to the equivalent factorial forms.
We need to show that:
n! ~ (n=1) n (n—1)!
Elin—k)!  kln—k—-1!" (k—D!(n—k)"

To do so, all we need to do is to covert the terms on the righhabthey have a common denominator and then
add them together. The common denominatas (s — k)!.

(n—1)! (n—1)! B (n—1!(n—k) (n—1)k
Mo —k—1 h=Dln—h)!  Ho—Rn—k=10 @ kk=D(n—k)
m=Dln—-k) (n-1k%

T T EKl(n—k) Kl(n — k)]

~ (n—=k+k)(n—-1)
kl(n —k)!
n!

T K-k

which is what we needed to show.

Notice also that the factorial form shows instantly t@) = (nfk); in other words, that choosing which of the
items to include gives the same value as choosingithek items to omit.

Finally, it's probably a good idea if the students havenérsé, to point out that these binomial coefficients can be
used to find things like lottery odds. If you need to makeorrect picks fronb0 choices to win the lottery, what
are the chances of winning? Well, there @%) = 15890700 equally likely choices, so you'll win about one time
in every16 million.
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10 An “Unrelated” Problem

Suppose we have a grid of city streets, withnorth-south streets andeast-west streets. Figure 5 illustrates an
example withm = n = 9 although there is no need for the two to be the same. The gtafiisd the number of
paths from one corner to the opposite cornéttd B in the figure) that are the shortest possible distance, iaroth
words, with no backtracking. A typical shortest route iswhas a bold path on the grid in the figure. We will
examine this problem in a couple of different ways.

One way to think of it (using the example in the figure) is thna éntire route has to inclugesteps down (and

to the right, of course). But thosedownward steps have to occur distributed amongtkieets that go down. In
the example route steps down are taken on the fourth strdetore on the fifth street, andmore on each of the
eighth and ninth streets. If you think about it, simply knogrhow many of the downward steps are taken on each
of the9 streets completely determines the route.

So the problem is equivalent to the following: How many ways there
A to assign8 identical balls (steps down) int® labeled boxes (the up-down
streets)? This is similar to thex“choosek” type problems, but not quite the
same. But here’s a nice way to visualize the “identical biallson-identical
boxes” problem. Imagine that the boxes are placed sidads/rext to each
other, and that we use a vertical bar to indicate the bourtwyeen adjacent
boxes. Since there agdboxes in this example, there will IBboundary walls.
Similarly, let's represent the balls by stars, and therélvals of those.

We claim thakvery listing of vertical bars and asterisks corresponds to éxact

one valid shortest-path through the grid. For example, #tle im the example
Figure 5: Routes through a grid corresponds to this:

Thus the number of paths simply corresponds to the numberafigements of bars an® stars. Well, we are
basically writing downl6 symbols in order, and if we know whichof them are stars, the others are bars, so there
must be {6 chooseB) = 12870 ways to do this.

If there arem streets by streets, there ane— 1 steps down to be distributed amongstreets. Thus there will be
m — 1 vertical bars anek — 1 asterisks. The answer is that there are{ n — 2 choosen — 1) routes inamn x n
grid.

It's actually probably worth counting the streets in a femgle grids before pulling out the big guns and obtaining
a general solution in a classroom setting.

Now look at the same problem in a different way. Suppose wentsgpoint

A. There is exactly one way to get there: do nothing. Now lodkeafpoints

on the horizontal street from or the vertical street from. For everyone 1—1— 1 — 1

of those points, there’s only one shortest path, the strtéiigh Whatwere | | | |
going to do is label all the points on the grid with the numbesiortest 1—2— 3 — 4 —
paths there are to get there. From these simple observatibitse labels | | | |

on the top and left edges of the grid will be labeled with thenber1. 1—3—6 —10— 15 — 21

Now for the key observation: to get to any point inside the gyiou either | | | | |
arrived from above or from the left. The total number of usiqoutes to 1—4—10—20— 35 — 56
that point will be the total number of routes to the point abplus the total | | | | |
number of routes to the point on your left. The upper left eoraf the 1—5—15—35— 70 —126

resulting grid will thus look something like what is illuated in figure 6. | | | | |
1—6—21—56—126—252

e Ul —
|
e O —
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Notice that this is just Pascal’s triangle, turned on itekid

In fact, if we start at the apex of Pascal’s triangle and takhpthat always

go down, but can go either to the right or left at each stags the numbers

in the triangle indicate the number of paths by which they lsameached.

In the early examples with the binomial theorem, we uBeathd L, that we

can now think of as “right” and “left”. When we reach the pasitin Pascal’s triangle corresponding foahoose

3) what that really amounts to is the number of paths from thexdpat are 7 steps long, and which contain 3
moves to the left (and hen@e— 3 = 4 moves to the right).

11 Binomial Coefficient Relationships

Here is a series of identities satisfied by the binomial coefiits. Some are easy to prove, and some are difficult.

§-0)-0): () - -

)-()+()- () () -
TR IGRETE BT P
() ) o) - o

3

) - )

)2
|

<§>2‘(?)2+ Z)Q‘@Q ( - {<—1>2<€$) o O
(3)+(z>+<z>+<’;>+(8>+<m>+ S ¢
(0 GG () () e s

Relations (a) and (b) were proved earlier in this article (Section 3).

Relations (c) and (d) can be proved by standard methods, Quick proof is available if we use a trick from
calculus. We begin by noticing that the binomial theorens ta$ that:

o= () (e () ()

If we take the derivative of both sides with respecttave obtain:

n(l+z)" ! = (Y) +2(g>x+3(g)x2---—i—n(Z)xn_l.

Substitutel for x and we obtain relation (d).
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If we start from the same equation but integrate instead, bt

(1+ z)ntt n 1/n\ 5, 1/n\ 4 1 (n\ .1
Ty - - n C
net1 o) e\ ) Talg)r ot oa\)r e

whereC is a constant to be determined. Substituting: 0, we obtainC' = 1/(n + 1), and then if we substitute
x = 1, we obtain relation (c).

If you don’t want to use calculus, here’s a different apptoaor relation (d) note that:

k(Z) NG %!k! " 7—1(23'@1! ] —”(Z:D

o) (1) 2(3) +53) + o)
() () () = e

Relation (c) can be proved similarly, starting from the fdett:
1 ny 1 n+1
k+1\k) n+1\k+1)

There are different ways to prove relation (e), but my faeois a combinatorial argument. Sin@cé) = (
can rewrite the sum of the squares of the binomial coeffisiaat

n n n n n n n n
G)6)+ ()65 G)G) () 6)
Now let's consider a particular way to calcule(?g). This just counts the number of ways to choadstems from
a set of2n. Imagine that we divide then items into two setsA and B, each of which contains items. If we
choose none of the items in sét we have to choose all from setB. If we choosel item from A we have to
choosen — 1 from B, and so on. In general, for each of t(@ ways we can chooseitems from set4, there are

(,,” ) ways to choose the remaining items fraiand this will add(}}) (, ", ) more ways to choose items from
2n. Sum them up, and we obtain relation (e).

Then

We'll leave the proof as an exercise.

n

nfk) we

A more traditional way to do the calculation is as follows:sFive note that:

n\ , n\ 1 Y\ o n\ .,
(0) () ve ()rsvees ()
n\ n n n—1 n n—2, 2 Y\ n
() ) ()t ()

If we multiply (x + y)™ by itself, once represented by the first version above and mpresented by the second,
we can see that the term containirityy™ will have a coefficient equal to the desired sum of productsimdémial
coefficients. But this is just the same as the coefficient'gf* in the expansion ofr + )" (z + )" = (z +y)*",
and that is jus{*").

(z+y)"

Finally, a third way to see that the sum is correct is to cagrsédspecial case of counting routes through a grid that
we solved in Section 10.
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A p. Consider a square grid such as the one displayed in Figure that figure there are
five horizontal and five vertical paths, but the argument wié méake will not depend
P, on that. Suppose we want to count the number of paths front goia point B in that
figure. From the work we did in Section 10, we know that the nen’nb(j).

But any path fromA to B must pass through exactly one of the poifts P, ..., Ps.
P, The number of paths from to B passing through poin®; is the number of paths from
Ato P; multiplied by the number of paths frof to B.

Again, using methods from Section 10, there gepaths fromA to P; and (;)) paths
Figure 7: Routes in afrom P1 to B. There arg(}) paths fromA to P, and () paths from? to B, and so on.
square grid Thus the total number of paths, which we know to@)z is:

()6)+ ()6 E) ()6 ()6 -6)

It should be clear that there is nothing special abdutas grid, and that the same argument can be used to count
paths througlany square grid, and this yields the result expressed in reldén

P. B

The second method that we used to compute relation (e) casdukta prove relation (f), and all we have to do is
to multiply (z — y)™ by (z + y)™ using the following two expansions:

() (e (e (o
oo = (e ey

Again, the desired term will be the coefficient #fy™ in the expansion ofx + y)"(x — y)", but this is just
(22 — y?)™. If n is odd, this coefficient is clearly zero, andhifis even, say: = 2m, then itis(—1)™ (2;7)

(. +y)"

The case where is odd is totally obvious since the values in Pascal’s tharage symmetric, and there is no
middle term for oddh, so each term with a positive sign will be matched by the amoading symmetric term
with a negative sign.

Relations (g) and (h) are easy to obtain. Consider the fatigwwvo expansions:

() (e Qe ()
At S

If we add the equations together, we obtain twice the sumlatioa (g) and if we subtract them, we obtain twice
the sum in (h). Then simply setandy to 1, and we see that the suon difference is2”. Since this is twice the
desired result, we see that in both cases, the s@fris.

(x+y)"
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12 Harmonic Differences

Write down the fractions in the harmonic serids‘1, 1/2, 1/3, ..., and in each row below that, calculate the
differences of the adjacent numbers. You will obtain a taide looks something like this:

1 1 1 1 1 1
1 2 3 4 5 6
1 1 1 1 1
2 6 12 20 30
1 1 1 1
3 12 30 60
1 1 1
4 20 60
1 1
5 30
1
6

If this table is rotated until the fractioty1 is on top, and then if the top row is multiplied lythe second row by
2, the third by3 and so on, we obtain a triangle that is exactly the same asiPasiangle except that the numbers
are in the denomintors instead of the numerators. This istegsrove if we simply write down the fractions in the
table above in terms of the binomial coefficients and showttiey satisfy the difference equations. Following is
the table above written in that form.

aen e eE) T )T 6E) T 6E)
6D BT eE) T 66T 66T

It is obvious that the first row is just the harmonic seriesalbthat needs to be shown is that successive entries in
the table can be obtained by subtracting the two entrieseabiivs is equivalent to showing that for anyandk:

1 1 1

n+ D) 2 ()

If we write the binomial coefficients above in their factdifiarm, this is equivalent to:

(n+2)k!(n—k)!  (n+1)(kE+1Dln—k)! (n+1E(n+1-k)

n! (n+1)! (n+1)!
We can put everything over a common denominatot!of

(n+2)k(n—k)! (E+D!(n—-k)! KEn+1-k)

n! n! n! ’
so since the denominators are the same, we are done if:

m+2)kln—kK!'—(k+Dln—k)! = kln+1-k)!

18



El(n+2)(n—kE)l—=(k+1(n—Fk)!) = kl(n+1-Ek)!
Kn+2—k—1)n—k)! = k(n+1—Fk)
Kn—k+Dn—k)! = Kn+1—k)

Kn+1-k)! = k(n+1—Fk)!

13 Finding Formulas for Sequences

Suppose you come across the following sequence:
5,7,21,53,109,195,317,481, ...,

and you would like to find a general formufdn) such thatf(0) = 5, f(1) = 7, f(2) = 21, f(3) = 53, and so
on. In many, many cases the following technique works.

5) 7 21 93 109 195 317 481
2 14 32 56 86 122 164
12 18 24 30 36 42
6 6 6 6 6
0 0 0 0

First list the numbers in a line as in the table above, and oh saccessive line, write the difference of the pair of
numbers above it. This is sort of the opposite of what you domm Pascal’s triangle. Continue in this way, and
if you are lucky, you will wind up with a line that remains caast (the line of6’s above), and then, if you were
to continue, the next line and every other line would be cataby filled with zeros. (If this does not happen, then
the following technique will not work, although if you do firrdpattern, other techniques may work.)

The example above happened to degenerate to all zeroesfiftiHme. This may occur in more or fewer lines.
The sequencg, 3,5,7,9, ... is all zeros on the third line, and other sequences may require lines before they
degenerate to all zeroes.

This isn’t exactly a formula, but it does provide an easy rodtto compute successive values in the original list,
assuming the pattern continues. In this case, since thefifis continues, just add anothérto it. That means

that the number following thé2 in the line above must bé2 + 6 = 48. The same reasoning tells us that the
number following thel 64 must bel64 + 48 = 212 and repeating the reasoning, the next number in our sequence
will be 481 + 212 = 693. We can repeat this as often as we like to obtain an arbitnamyter of terms.

The most important thing to note is that the entire table imgietely determined by the numbers on the left edge;
in this case they areé, 2, 12 and6 followed by an infinite sequence of zeroes.

Although the method above will certainly work, it would kb painful to calculate the millionth term this way. It
would be much better to have an explicit formula for & term.

As we already observed, the generation of tables like thoseesis similar to what we do to obtain Pascal’s triangle
except that we subtract instead of add. Because of this dgtisurprising that an explicit formula can be obtained
based on coefficients in Pascal’s triangle. We will simpatesthe method for obtaining such a formula and then
we will explore why it works. In fact, our formula will use onthe numbers on the left edge of our table (which,
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as we observed, generate the entire table). In the exarhpleates, 2,12, 6, 0,0, .. .. Here is the formula:

n n n n n n
s(5) +2(7) +12(5) o) +o() +o(7) +-
Obviously once we arrive at the infinite sequence of zeroseraf the remaining terms will contribute anything,

so the formula above really only has four non-zero termstslgurrent state the formula is correct, but it can be
simplified with a bit of algebra:

o0 = 5(5) +2(7) +12(5) +o )

fn) = 5.1+2.n+12.n(n2—1)+6.n(n—16)(n—2)
f(n) = 54204 6(n—n)+ (n — 3n® +2n)
f(n) = n3+3n%—2n+5.

You can check that this formula is correct by plugging in eliéint values for. and verifying thatf(0) = 5,
f(1)=17, f(2) = 21, and so on.

The method seems to work great, but why? One way to see thisaisply the method to a diagonal of Pascal’s
triangle wheref (z) = (g) (There is nothing special about this row except that it ésrttost complex part of the
formula we generated for the example above.) We will makesémsible assumptions thd)) = () = (3) = 0.

In other words there is no way to chodsebjects from a set consisting of zero, one or two objectselitea table

of successive differences Wi(}’g) as the top row:

What jumps out is that this is just a part of Pascal’s triamgléts side. Each successive row in the table is another
diagonal in Pascal’s triangle. If you look at how the numlaesgenerated, it is obvious why this occurs, and that
no matter what diagonal of the triangle you begin with, a Einpattern will occur.

Note also that the “generating pattern” of numbers on thteoliethe table is, in this casé, 0,0, 1,0,0,.... Thus
0,0,0,1,0,0,...generates the rO\@). If we had begun with the rov(f;), the corresponding generating pattern
would have been, 0,1,0,0,... ., or for (%), it would have been, 0,0,0,0,1,0,0,...and so on.

If the generating pattern for some sequence vieie0,0,1,0,0, ..., it should be clear that the initial line will

S 0 0)

Also note that if we had multiplied every term in the top rowebgonstant, then every row of successive differences
would be multiplied by the same constant, and the final pattéll simply have that constant in the approprite
spots in the list of numbers on the left of the table. Thus eahhique of multiplied the appropriate coefficient of
Pascal’s triangle by the constant in that row and summingytsieould yield a formula for the sequence.
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As a final example, let's work out a formula for the followingrs:
fn)=0%+13+2%+3% ... 4 n’.

We can work out the first few values by hand, and using our niktbiatain the following table. (Note the interest-
ing fact that all the numbers in the first row happen to be peggquares.)

0 1 9 36 100 225 441 784
1 8 27 64 125 216 343
7 19 37 61 91 127
12 18 24 30 36
6 6 6 6
0 0 0

According to our analysis, the result should be:

oo (o) () e (o) o ) o)

If we apply some algebra, we obtain:
n
o(4)
)(

o = (i) () (e) o)

—1 -1 -2 —1 —N(n —
2 _ 4_6n3 4L 11n2 —

fn) = 0+n+7w+2(n3—3n2+2n)+n 6712 n”—6n

dn  14n? —14n  8n® —24n?2 +16n n* —6n3 + 11n? — 6n
fn) = Z"’ 1 + 1 + 1

2

nt —2n3 + n? n(n +1)

oy = M (snn)’

The result above may be more familiar as:
CB+12+25 4+ nd=0+14+2+-- +n)?

sincel +2+3+---n=n(n+1)/2.
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