We begin with a set of problems that will be shown to be completely equivalent. The solution to each problem is the same sequence of numbers called the Catalan numbers. Later in the document we will derive relationships and explicit formulas for the Catalan numbers in many different ways.

1 Problems

1.1 Balanced Parentheses

Suppose you have \(n\) pairs of parentheses and you would like to form valid groupings of them, where “valid” means that each open parenthesis has a matching closed parenthesis. For example, “((()))” is valid, but “(()))” is not. How many groupings are there for each value of \(n\)?

Perhaps a more precise definition of the problem would be this: A string of parentheses is valid if there are an equal number of open and closed parentheses and if you begin at the left as you move to the right, add 1 each time you pass an open and subtract 1 each time you pass a closed parenthesis, then the sum is always non-negative.

Table 1 shows the possible groupings for \(0 \leq n \leq 5\).

<table>
<thead>
<tr>
<th>(n)</th>
<th>Groupings</th>
<th># of groupings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>*</td>
<td>1 way</td>
</tr>
<tr>
<td>1</td>
<td>()</td>
<td>1 way</td>
</tr>
<tr>
<td>2</td>
<td>()(), (())</td>
<td>2 ways</td>
</tr>
<tr>
<td>3</td>
<td>()()(), (())(), (())(), (())()</td>
<td>5 ways</td>
</tr>
</tbody>
</table>
| 4 | ()()()(), (())()(), (())()(), (())()(), (())()(), (())()(), (())()()(), (())()

Table 1: Balanced Parentheses

* It is useful and reasonable to define the count for \(n = 0\) to be 1, since there is exactly one way of arranging zero parentheses: don’t write anything. It will become clear later that this is exactly the right interpretation.
1.2 Mountain Ranges

How many “mountain ranges” can you form with \(n \) upstrokes and \(n \) downstrokes that all stay above the original line? If, as in the case above, we consider there to be a single mountain range with zero strokes, Table 2 gives a list of the possibilities for \(0 \leq n \leq 3 \):

<table>
<thead>
<tr>
<th>(n)</th>
<th>Mountain Ranges</th>
<th>Possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>*</td>
<td>1 way</td>
</tr>
<tr>
<td>1</td>
<td>/</td>
<td>1 way</td>
</tr>
<tr>
<td>2</td>
<td>/\</td>
<td>2 ways</td>
</tr>
<tr>
<td></td>
<td>/, /</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>/\ /\</td>
<td>5 ways</td>
</tr>
<tr>
<td></td>
<td>/\ /, /, /\</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/\ /, /, /, /\</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/, /, /, /, /, /\</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Mountain Ranges

Note that these must match the parenthesis-groupings above. The “(” corresponds to “/” and the “)” to “\”. The mountain ranges for \(n = 4 \) and \(n = 5 \) have been omitted to save space, but there are 14 and 42 of them, respectively. It is a good exercise to draw the 14 versions with \(n = 4 \).

In our formal definition of a valid set of parentheses, we stated that if you add one for open parentheses and subtract one for closed parentheses that the sum would always remain non-negative. The mountain range interpretation is that the mountains will never go below the horizon.

1.3 Diagonal-Avoiding Paths

In a grid of \(n \times n \) squares, how many paths are there of length \(2n \) that lead from the upper left corner to the lower right corner that do not touch the diagonal dotted line from upper left to lower right? In other words, how many paths stay on or above the main diagonal?

This is obviously the same question as in the example above, with the mountain ranges running diagonally. In Figure 1 we can see how one such path corresponds to a mountain range.

Another equivalent statement for this problem is the following. Suppose two candidates for election, \(A \) and \(B \), each receive \(n \) votes. The votes are drawn out of the voting urn one after the other. In how many ways can the votes be drawn such that candidate \(A \) is never behind candidate \(B \)?
1.4 Polygon Triangulation

If you count the number of ways to triangulate a regular polygon with \(n + 2 \) sides, you also obtain the Catalan numbers. Figure 2 illustrates the triangulations for polygons having 3, 4, 5 and 6 sides.

As you can see, there are 1, 2, 5, and 14 ways to do this. The “2-sided polygon” can also be triangulated in exactly 1 way, so the case where \(n = 0 \) also matches.

1.5 Hands Across a Table

If \(2n \) people are seated around a circular table, in how many ways can all of them be simultaneously shaking hands with another person at the table in such a way that none of the arms cross each other? Figure 3 illustrates the arrangements for 2, 4, 6 and 8 people. Again, there are 1, 2, 5 and 14 ways to do this.

Figure 2: Polygon Triangulations

Figure 3: Hands Across the Table
1.6 Binary Trees

The Catalan numbers also count the number of rooted binary trees with \(n \) internal nodes. Illustrated in Figure 4 are the trees corresponding to \(0 \leq n \leq 3 \). There are 1, 1, 2, and 5 of them. Try to draw the 14 trees with \(n = 4 \) internal nodes.

A rooted binary tree is an arrangement of points (nodes) and lines connecting them where there is a special node (the root) and as you descend from the root, there are either two lines going down or zero. Internal nodes are the ones that connect to two nodes below.

![Figure 4: Binary Trees](image)

1.7 Plane Rooted Trees

A plane rooted tree is just like the binary tree above, except that a node can have any number of sub-nodes; not just two.

Figure 5 shows a list of the plane rooted trees with \(n \) edges, for \(0 \leq n \leq 3 \). Try to draw the 14 trees with \(n = 4 \) edges.

![Figure 5: Plane Rooted Trees](image)

1.8 Skew Polyominos

A polyomino is a set of squares connected by their edges. A skew polyomino is a polyomino such that every vertical and horizontal line hits a connected set of squares and such that the successive
columns of squares from left to right increase in height—the bottom of the column to the left is always lower or equal to the bottom of the column to the right. Similarly, the top of the column to the left is always lower than or equal to the top of the column to the right. Table 3 shows a set of such skew polyominos.

Another amazing result is that if you count the number of skew polyominos that have a perimeter of \(2n + 2\), you will obtain \(C_n\). Note that it is the perimeter that is fixed—not the number of squares in the polyomino.

1.9 Multiplication Orderings

Suppose you have a set of \(n + 1\) numbers to multiply together, meaning that there are \(n\) multiplications to perform. Without changing the order of the numbers themselves, you can multiply the numbers together in many orders. Here are the possible multiplication orderings for \(0 \leq n \leq 4\) multiplications. The groupings are indicated with parentheses and dot for multiplication in Table 4.

\(n = 0\)	\((a)\)	1 way
\(n = 1\)	\((a\cdot b)\)	1 way
\(n = 2\)	\((a\cdot b\cdot c), (a\cdot (b\cdot c))\)	2 ways
\(n = 3\)	\(((a\cdot b)\cdot c\cdot d), ((a\cdot b)\cdot (c\cdot d)), ((a\cdot (b\cdot c))\cdot d), (a\cdot ((b\cdot c)\cdot d)), (a\cdot (b\cdot (c\cdot d)))\)	5 ways
\(n = 4\)	\(((a\cdot (b\cdot c)\cdot d)\cdot e), (((a\cdot b)\cdot c)\cdot (d\cdot e)), ((((a\cdot b)\cdot c)\cdot (d\cdot e)), (((a\cdot b)\cdot (c\cdot d))\cdot e), ((a\cdot (b\cdot c)\cdot d)\cdot e), ((a\cdot (b\cdot (c\cdot d)))\cdot e), (a\cdot ((b\cdot c)\cdot d)\cdot e)), (a\cdot ((b\cdot c)\cdot (d\cdot e))), (a\cdot ((b\cdot (c\cdot d)))\cdot e), (a\cdot (b\cdot ((c\cdot d)))\cdot e)), (a\cdot (b\cdot (c\cdot (d\cdot e))))\)	14 ways

Table 4: Multiplication Arrangements

To convert the examples above to the parenthesis notation, erase everything but the dots and the
closed parentheses, and then replace the dots with open parentheses. For example, if we wish to convert \((a \cdot (((b \cdot c) \cdot d) \cdot e)))\), first erase everything but the dots and closed parentheses: \(\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \).

Then replace the dots with open parentheses to obtain: \((())())())\).

The examples in Table 4 are arranged in exactly the same order as the entries in Table 1 with the correspondence described in the previous paragraph. Try to convert a few yourself in both directions to make certain you understand the relationships.

2 A Recursive Definition

The examples above all seem to generate the same sequence of numbers. In fact it is obvious that some are equivalent: parentheses, mountain ranges and diagonal-avoiding paths, for example. Later on, we will prove that the other sequences are also the same. Once we’re convinced that they are the same, we only need to have a formula that counts any one of them and the same formula will count them all.

If you have no idea how to begin with a counting problem like this, one good approach is to write down a formula that relates the count for a given \(n\) to previously-obtained counts. It is usually easy to count the configurations for \(n = 0\), \(n = 1\), and \(n = 2\) directly, and from there, you can count more complex versions.

In this section, we’ll use the example with balanced parentheses discussed and illustrated in Section 1.1. Let us assume that we already have the counts for \(0\), \(1\), \(2\), \(3\), \(\cdots\), \(n-1\) pairs and we would like to obtain the count for \(n\) pairs. Let \(C_i\) be the number of configurations of \(i\) matching pairs of parentheses, so \(C_0 = 1\), \(C_1 = 1\), \(C_2 = 2\), \(C_3 = 5\), and \(C_4 = 14\), which can be obtained by direct counts.

We know that in any balanced set, the first character has to be “(”. We also know that somewhere in the set is the matching “)” for that opening one. In between that pair of parentheses is a balanced set of parentheses, and to the right of it is another balanced set:

\[(A)B,\]

where \(A\) is a balanced set of parentheses and so is \(B\). Both \(A\) and \(B\) can contain up to \(n-1\) pairs of parentheses, but if \(A\) contains \(k\) pairs, then \(B\) contains \(n-k-1\) pairs. Notice that we will allow either \(A\) or \(B\) to contain zero pairs, and that there is exactly one way to do so: don’t write down any parentheses.

Thus we can count all the configurations where \(A\) has 0 pairs and \(B\) has \(n-1\) pairs, where \(A\) has 1 pair and \(B\) has \(n-2\) pairs, and so on. Add them up, and we get the total number of configurations with \(n\) balanced pairs.

Here are the formulas. It is a good idea to try plugging in the numbers you know to make certain that you haven’t made a silly error. In this case, the formula for \(C_3\) indicates that it should be equal to \(C_3 = 2 \cdot 1 + 1 \cdot 1 + 1 \cdot 2 = 5\).

\[
\begin{align*}
C_0 & = C_0 C_0 \\
C_1 & = C_1 C_0 + C_0 C_1 \\
C_2 & = C_2 C_0 + C_1 C_1 + C_0 C_2 \\
C_3 & = C_3 C_0 + C_2 C_1 + C_1 C_2 + C_0 C_3 \\
C_4 & = \cdots
\end{align*}
\]
$C_n = C_{n-1}C_0 + C_{n-2}C_1 + \cdots + C_1C_{n-2} + C_0C_{n-1}$ (5)

Beginning in the next section, we will be able to use these recursive formulas to show that the counts of other configurations (triangulations of polygons, rooted binary trees, rooted trees, et cetera) satisfy the same formulas and thus must generate the same sequence of numbers.

But simply by using the formulas above and a bit of arithmetic, it is easy to obtain the first few Catalan numbers: 1, 1, 2, 5, 14, 42, 132, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, \ldots

2.1 Counting Polygon Triangulations

It is not hard to see that the polygon triangulations discussed in section 1.4 can be counted in much the same way as the balanced parentheses. See Figure 6.

![Figure 6: Octagon Triangulations](image)

In the figure we consider the octagon, but it should be clear that the same argument applies to any convex polygon. Consider the horizontal line at the top of the polygon. After triangulation, it will be part of exactly one triangle, and in this case, there are exactly six possible triangles of which it can be a part. In each case, once that triangle is selected, there is a polygon (possibly empty) on the right and the left of the original triangle that must itself be triangulated.

What we would like to show is that a convex polygon with $n > 3$ sides can be triangulated in C_{n-2} ways. Thus the octagon should have $C_6 = C_4$ triangulations.

For the example in the upper left of Figure 6, the triangle leaves a 7-sided figure on the left and an empty figure (essentially a two-sided polygon) on the right. This triangulation can be completed by triangulating both sides: the one on the left can be done in C_5 ways and the empty one on the right, C_0 ways, for a total of $C_5 \cdot C_0$. The middle example on the top leaves a pentagon and a triangle that, in total, can be triangulated in $C_4 \cdot C_1$ ways. Similar arguments can be made for all six positions of the triangle containing the top line, so we conclude that:

$$C_6 = C_5 \cdot C_0 + C_4 \cdot C_1 + C_3 \cdot C_2 + C_2 \cdot C_3 + C_1 \cdot C_4 + C_0 \cdot C_5,$$

which is exactly how the Catalan numbers are defined for the nested parentheses.

Convince yourself that a similar argument can be made for any size original convex polygon.
2.2 Counting Non-Crossing Handshakes

To count the number of handshakes discussed in Section 1.5 we can use an analysis similar to that used in section 2.1.

If there are $2n$ people at the table pick any particular person, and that person will shake hands with somebody. To admit a legal pattern, that person will have to leave an even number of people on each side of the person with whom he shakes hands. Of the remaining $n-1$ pairs of people, he can leave zero on the right and $n-1$ pairs on the left, 1 on the right and $n-2$ on the left, and so on. The pairs left on the right and left can independently choose any of the possible non-crossing handshake patterns, so again, the count C_n for n pairs of people is given by:

$$C_n = C_{n-1}C_0 + C_{n-2}C_1 + \cdots + C_1C_{n-2} + C_0C_{n-1},$$

which, together with the fact that $C_0 = C_1 = 1$, is just the definition of the Catalan numbers.

2.3 Counting Trees

Counting the binary trees discussed in Section 1.6 is similar to what we’ve done previously. Obviously there is one way to make a rooted binary tree with zero or one internal node. To work out the number of trees with n internal node, note that one of those n nodes is the root node, and then the $n-1$ additional internal nodes must be distributed on the left or the right below the root node. These can be distributed as 0 on the left and $n-1$ on the right, 1 on the left and $n-2$ on the right, and so on, yielding exactly the same formula that we had in every previous example.

To count the rooted plane trees discussed in Section 1.7 we use the same strategy. There is one example each for trees with zero and one edge, so the counts here are the same: $C_0 = C_1 = 1$.

![Figure 7: Plane Rooted Trees With 4 Edges](image)

Now, to count the number of plane rooted trees with $n > 1$ edges we again begin from the root. There is at least one edge going down (leaving us with $n-1$ edges to draw). The remaining $n-1$ edges can be placed below that initial edge or hooked directly to the root node to the right of that
The \(n - 1 \) edges, as before, can be distributed to these two locations as 0 and \(n - 1 \), as 1 and \(n - 2 \), et cetera. It should be clear that the same formula defining the Catalan numbers will apply to the count of rooted plane trees.

In Figure 7 the table on the left duplicates the structure of trees with 3 or fewer edges and the table on the right shows how the trees with 4 edges are generated from them.

2.4 Counting Diagonal-Avoiding Paths

Up to now we do not have an explicit formula for the Catalan numbers. We know that a large collection of problems all have the same answers, and we have a recursive formula for those numbers, but it would be nice to have an explicit form.

Perhaps the easiest way to obtain an explicit formula for the Catalan numbers is to analyze the number of diagonal-avoiding paths discussed in Section 1.3. We will do so by counting the total number of paths through the grid and then subtract off the number of paths that hit the diagonal.

![Figure 8: Modifying a Bad Path](image)

Figure 8 illustrates a typical path that we do not want to count since it crosses the dotted diagonal line. Such a path may cross that line multiple times, but there is always a first time; in the figure, point \(P \) is the first grid point it touches on the wrong side of the diagonal. There will always be such a point \(P \) for every bad path.

For every such path, reflect the path beginning at \(P \)—every time the original path goes to the right, go down instead, and when the original path goes down, go to the right. It is clear that by the time the path reaches the point \(P \) it will have traveled one more step down than across, so it will have moved \(k \) steps to the right and \(k + 1 \) steps down. The total path has \(n \) steps across and down, so there remain \(n - k \) steps to the right and \(n - k - 1 \) steps down. But since we swap steps to the right and steps down, the modified path with have a total of \((k) + (n - k - 1) = n - 1 \) steps to the right and \((k + 1) + (n - k) = n + 1 \) steps down. Thus every modified path ends at the same point, \(n - 1 \) steps to the right and \(n + 1 \) steps down.

Every bad path can be modified this way, and every path from the original starting point to this point \(n - 1 \) to the right and \(n + 1 \) down corresponds to exactly one bad path. Thus the number of bad paths is the total number of routes in a grid that is \((n - 1) \) by \((n + 1) \).

There are \(\binom{m+k}{m} \) paths through an \(k \times m \) grid\(^1\). Thus the total number of paths through the \(n \times n \) grid is \(\binom{2n}{n} \) and the total number of bad paths is \(\binom{2n}{n+1} \). Thus \(C_n \), the \(n \)th Catalan number, or the total number of diagonal-avoiding paths through an \(n \times n \) grid, is given by:

\[
C_n = \binom{2n}{n} - \binom{2n}{n+1} = \binom{2n}{n} - \frac{n}{n+1} \binom{2n}{n} = \frac{1}{n+1} \binom{2n}{n}.
\]

\(^1\)To see this, remember that there are \(m \) steps down that need to be taken along the \(k + 1 \) possible paths going down. Thus the problem reduces to counting the number of ways of putting \(m \) objects in \(k + 1 \) boxes which is \(\binom{m+k}{m} \).
3 Counting Mountain Ranges—Method 1

A very similar argument can be made as in the previous section if we use the interpretation of the Catalan numbers based on the count of mountain ranges as described in Section 1.2. In that section, we are seeking arrangements of n up-strokes and n down-strokes that form valid mountain ranges.

If we completely ignore whether the path is valid or not, we have n up-strokes that we can choose from a collection of $2n$ available slots. In other words, ignoring path validity, we are simply asking how many ways you can rearrange a collection of n up-strokes and n down-strokes. The answer is clearly $\binom{2n}{n}$.

Now we have to subtract off the bad paths. Every bad path goes below the horizon for the first time at some point, so from that point on, reverse all the strokes—replace up-strokes with down-strokes and vice-versa. It is clear that the new paths will all wind up 2 steps above the horizon, since they consist of $n + 1$ up-strokes and $n - 1$ down-strokes. Conversely, every path that ends two steps above the horizon must be of this form, so it corresponds to exactly one bad path.

How many such bad paths are there? The same number as there are ways to choose the $n + 1$ up-strokes from among the $2n$ total strokes, or $\binom{2n+1}{n+1}$.

Thus the count of valid mountain ranges, or C_n, is given by exactly the same formula:

$$C_n = \binom{2n}{n} - \binom{2n}{n+1} = \binom{2n}{n} - \frac{n}{n+1} \binom{2n}{n} = \frac{1}{n+1} \binom{2n}{n}.$$

4 Counting Mountain Ranges—Method 2

Here is a different way to analyze the mountain problem. This time, imagine that we begin with $n + 1$ up-strokes and only n down-strokes—we add an extra up-stroke to our collection.

First we solve the problem: How many arrangements can be made of these $2n + 1$ symbols, without worrying about whether they form a “valid” mountain range (whatever that means with an unbalanced number of up-strokes and down-strokes). Clearly, if the ordering does not matter, there are $\binom{2n+1}{n}$ ways to do this.

One thing is certain, however. No matter how they are arranged, they mountain range will be one unit higher at the end, since we take $n + 1$ steps up and only n steps down.

Let’s look at a specific example with $n = 3$ (and $2n + 1 = 7$): up up down up up down down. In Figure 4, we have arranged this sequence over and over and you can see that every 7 steps, the mountain range is one unit higher.

Since it is a repeating pattern, it’s clear that we can draw a straight line below it that touches the bottom-most points of the growing mountain range.
In our example, this touching line seems to hit only once per complete set of 7 strokes, and we will show that this will always be the case, for any unbalanced number of up-strokes and down-strokes.

We can draw our mountain range on a grid, and it’s clear that the slope of the line is $1/(2n+1)$ (it goes up 1 unit in every complete cycle of the pattern of $2n+1$ strokes. But lines with slope $1/(2n+1)$ can only hit lattice points every $2n+1$ units, so there is exactly one touching in each complete cycle.

If you have a series of $2n+1$ strokes, you can cycle that around to $2n+1$ arrangements. For example, the arrangement //\// can be cycled to four other arrangements: /\//, /\//, /\//, and \//. That means the complete set of arrangements can be divided into equivalence classes of size $2n+1$, where two arrangements are equivalent if they are cycled versions of each other.

If we consider the version among these $2n+1$ cycles, the only one that yields a valid mountain range is the one that begins at the low point of the $2n+1$ arrangement. Thus, to get a count of valid mountain ranges with n up-strokes and n down-strokes, we need to divide our count of $2n+1$ stroke arrangements by $2n+1$:

$$C_n = \frac{1}{2n+1} \binom{2n+1}{n} = \frac{1}{2n+1} \frac{(2n+1)!}{n!(n+1)!} = \frac{1}{n+1} \frac{(2n)!}{n!n!} = \frac{1}{n+1} \binom{2n}{n}.$$

Finally, note that when the line is drawn that touches the bottom edge of the range of mountains with one more “up” than “down”, the first steps after the touching points are two “ups”, since an “up-down” would immediately dip below the line. It should be clear that if one of the two initial “up” moves is removed, the resulting series will stay above a horizontal line.

5 Generating Function Solution

Using the formulas 1 through 5 in Section 2, we can obtain an explicit formula for the Catalan numbers, C_n using the technique known as generating functions.

We begin by defining a function $f(z)$ that contains all of the Catalan numbers:

$$f(z) = C_0 + C_1z + C_2z^2 + C_3z^3 + \cdots = \sum_{i=0}^{\infty} C_i z^i.$$

If we multiply $f(z)$ by itself to obtain $[f(z)]^2$, the first few terms look like this:

$$[f(z)]^2 = C_0C_0 + (C_1C_0 + C_0C_1)z + (C_2C_0 + C_1C_1 + C_0C_2)z^2 + \cdots.$$

The coefficients for the powers of z are the same as those for the Catalan numbers obtained in equations 1 through 5:

$$[f(z)]^2 = C_1 + C_2z + C_3z^2 + C_4z^3 + \cdots.$$

We can convert Equation 6 back to $f(z)$ if we multiply it by z and add C_0, so we obtain:

$$f(z) = C_0 + z[f(z)]^2.$$

Equation 7 is just a quadratic equation in $f(z)$ which we can solve using the quadratic formula. In a more familiar form, we can rewrite it as: $zf^2 - f + C_0 = 0$. This is the same as the quadratic
equation: \(af^2 + bf + c = 0 \), where \(a = z \), \(b = -1 \), and \(c = C_0 \). Plug into the quadratic formula and we obtain:

\[
f(z) = \frac{1 - \sqrt{1 - 4z}}{2z}. \tag{8}
\]

Notice that we have used the \(-\) sign in place of the usual \(\pm \) sign in the quadratic formula. We know that \(f(0) = C_0 = 1 \), so if we replaced the \(\pm \) symbol with \(+\), as \(z \to 0 \), \(f(z) \to \infty \).

To expand \(f(z) \) we will just use the binomial formula on

\[
\sqrt{1 - 4z} = (1 - 4z)^{1/2}.
\]

If you are not familiar with the use of the binomial formula with fractional exponents, don’t worry—it is exactly the same, except that it never terminates.

Let’s look at the binomial formula for an integer exponent and just do the same calculation for a fraction. If \(n \) is an integer, the binomial formula gives:

\[
(a + b)^n = a^n + \frac{n}{1} a^{n-1} b + \frac{n(n - 1)}{2 \cdot 1} a^{n-2} b^2 + \frac{n(n - 1)(n - 2)}{3 \cdot 2 \cdot 1} a^{n-3} b^3 + \cdots.
\]

If \(n \) is an integer, eventually the numerator is going to have a term of the form \((n - n)\), so that term and all those beyond it will be zero. If \(n \) is not an integer, and it is \(1/2 \) in our example, the numerators will pass zero and continue. Here are the first few terms of the expansion of \((1 - 4z)^{1/2}\):

\[
(1 - 4z)^{1/2} = 1 - \frac{1}{1!} 4z - \frac{\frac{1}{2}}{2 \cdot 1} (4z)^2 - \frac{\frac{1}{2} \left(-\frac{1}{2} \right)}{3 \cdot 2 \cdot 1} (4z)^3 - \frac{\frac{1}{2} \left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right)}{4 \cdot 3 \cdot 2 \cdot 1} (4z)^4 - \frac{\frac{1}{2} \left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(-\frac{5}{2} \right) \left(-\frac{7}{2} \right)}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} (4z)^5 + \cdots.
\]

We can get rid of many powers of 2 and combine things to obtain:

\[
(1 - 4z)^{1/2} = 1 - \frac{1}{2} 2z - \frac{1}{2!} 4z^2 - \frac{3 \cdot 1}{3!} 8z^3 - \frac{5 \cdot 3 \cdot 1}{4!} 16z^4 - \frac{7 \cdot 5 \cdot 3 \cdot 1}{5!} 32z^5 - \cdots \tag{9}
\]

From Equations 9 and 8:

\[
f(z) = 1 + \frac{1}{2} 2z + \frac{3 \cdot 1}{3!} 4z^2 + \frac{5 \cdot 3 \cdot 1}{4!} 8z^3 + \frac{7 \cdot 5 \cdot 3 \cdot 1}{5!} 16z^4 + \cdots \tag{10}
\]

The terms that look like \(7 \cdot 5 \cdot 3 \cdot 1 \) are a bit troublesome. They are like factorials, except they are missing the even numbers. But notice that \(2^2 \cdot 2! = 4 \cdot 2 \), that \(2^3 \cdot 3! = 6 \cdot 4 \cdot 2 \), that \(2^4 \cdot 4! = 8 \cdot 6 \cdot 4 \cdot 2 \), et cetera. Thus \((7 \cdot 5 \cdot 3 \cdot 1) \cdot 2^4 4! = 8! \). If we apply this idea to Equation 10 we can obtain:

\[
f(z) = 1 + \frac{2!}{1! 1!} z + \frac{4!}{2! 2!} z^2 + \frac{6!}{3! 3!} z^3 + \frac{8!}{4! 4!} z^4 + \cdots = \sum_{i=0}^\infty \frac{1}{i + 1} \binom{2i}{i} z^i.
\]

From this we can conclude that the \(i \)th Catalan number is given by the formula

\[
C_i = \frac{1}{i + 1} \binom{2i}{i}.
\]