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1. Well-known Facts

(1) Let A1 and B1 be the midpoints of the sides BC and AC of 4ABC. Prove that

(a)
−→

AA1=
1
2
( −→

AB +
−→
AC

)
; (b)

−→
B1A1=

1
2

−→
AB .

(2) Let A1 and B1 be the midpoints of the sides BC and AD of quadrilateral ABCD.
Prove that

−→
B1A1=

1
2
( −→

AB +
−→
CD

)
.

Note that Exercise 2 generalizes Exercise 1: for part (a) let D coincide with A; for
part (b) let D coincide with C.

(3) Consider vector
−→
XY , and draw two “paths” of vectors ~v1, ..., ~vn and ~w1, ..., ~wm such

that each path starts at point X and ends at point Y . Prove that
−→
XY =

1
2
(
~v1 + · · ·+ ~vn + ~w1 + · · ·+ ~wm

)
.

Note that Exercise 3 further generalizes Exercise 2.

(4) Let f be any of the following transformations of the plane: a rotation, a translation,
a homothety, a reflection, or a composition of the above. Let ~v and ~w be two vectors
in the plane. Prove that

f(~v + ~w) = f(~v) + f(~w).

Definition. A distance–preserving transformation f of the plane is a transformation
which preserves all pairwise distances, i.e. for any two points A and B is the plane
we have that the distance between A and B is the same as the distance between
their images f(A) and f(B) under the transformation: |AB| = |f(A)f(B)|.

(5) Check that rotations, translations and reflections are distance–preserving transfor-
mations, but homotheties are not except in the cases of the identity transformation
and central symmetries (both of which are special cases of homotheties.) Further,
prove that any distance–preserving transformation of the plane is a composition of
a translation and a rotation, or of a translation and a reflection.



2. Centroid and Leibnitz Theorem

Definition. Given points A1, A2, ..., An (in the plane or in space), the centroid G
of these points is the unique point which satisfies

−→
GA1 +

−→
GA2 + · · ·+

−→
GAn= ~0.

Note that the medicenter of any 4ABC is the centroid of the vertices A,B, C.

(6) Prove that for any points A1, A2, ..., An there exists a unique centroid G as defined
above.

(7) Let G be the centroid of A1, A2, ..., An, and X - an arbitrary point. Prove that
−→

XA1 +
−→

XA2 + · · ·+
−→

XAn= n
−→
XG .

Note that for X = G, this reduces to the definition of the centroid G.

(8) (Leibnitz) Let G be the medicenter of 4ABC, X - an arbitrary point. Prove that

XA2 + XB2 + XC2 = 3XG2 + GA2 + GB2 + GC2.

Generalize to an arbitrary polygon A1A2...An with centroid G:
n∑

i=1

XA2
n = nXG2 +

n∑
i=1

GA2
i .

(9) Let H be the orthocenter of 4ABC and let R be its circumradius. Prove that

HA2 + HB2 + HC2 ≥ 3R2.

When is equality obtained?

(10) (84.49) Let 4ABC with medicenter G be inscribed in a circle of center O. Point
M lies inside the circle with diameter OG. Lines AM , BM and CM intersect the
circumcircle again in points A′, B′ and C ′, respectively. Prove that the area of
4ABC is not greater than the area of 4A′B′C ′.

(11) (G260) A point M and a circle k are given in the plane. If ABCD is an arbitrary
square inscribed in k, prove that the sum MA4 + MB4 + MC4 + MD4 is indepen-
dent of the positioning of the square. Replace now the square by a regular n-gon
A1A2...An. Let Sm =

∑
i MAm

i . For what natural m is Sm independent of the
position of the n-gon (still inscribed in k)?

(12) (G270) Points A1, A2, ..., An (n ≥ 3) lie on a circle with center O. Drop a perpendic-
ular through the centroid of every n− 2 of these points towards the line determined
by the remaining two points. Prove that the

(
n
2

)
thus drawn lines are all concurrent.

(13) (G271) Points A1, A2, ..., An (n ≥ 2) lie on a sphere. Drop a perpendicular through
the centroid of every n− 1 of these points towards the plane, tangent to the sphere
at the remaining n-th point. Prove that the n drawn lines are all concurrent.
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3. Rotations and Similarities

(14) Let ρ(O,α) be a rotation about angle α and centered at point O. Let g be a line in
the plane, and g′ be its image under the rotation. Let M and M ′ be the feet of the
perpendiculars dropped from O to g and g′, and let M1 be the intersection point of
g and g′. Prove that
(a) the angle between g and g′ equals α.
(b) one can map point M into M1 by composing a rotation ρ1(O,α/2) and a

homothety h(O, 1/(cos α
2 )), i.e. a similarity s(O,α, 1/(cos α

2 )).

(15) (G262) 4ABC is rotated to 4A′B′C ′ around its circumcenter O by angle α. Let
A1, B1 and C1 be the intersection points of lines BC and B′C ′, CA and C ′A′, and
AB and A′B′, respectively. Prove that 4A1B1C1 and 4ABC are similar, and find
the ratio of their sides.

(16) (G263) The quadrilateral ABCD is inscribed in a circle k with center O, and the
quadrilateral A′B′C ′D′ is obtained by rotating ABCD around O by some angle.
Let A1, B1, C1, D1 be the intersection points of the lines A′B′ and AB, B′C ′ and
BC, C ′D′ and CD, and D′A′ and DA. Prove that A1B1C1D1 is a parallelogram.

(17) (G264) In quadrilateral ABCD, the diagonals intersect in point O. Quadrilateral
A′B′C ′D′ is obtained by rotating ABCD around O by some angle. Let A1, B1, C1, D1

be the intersection points of the lines A′B′ and AB, B′C ′ and BC, C ′D′ and CD,
and D′A′ and DA. Prove that A1B1C1D1 is cyclic if and only if AC ⊥ BD.

(18) Let A1A2A3A4 be an arbitrary cyclic quadrilateral. Denote by H1, H2, H3 and H4

the orthocenters of 4A2A3A4, 4A3A4A1, 4A4A1A2 and 4A1A2A3, respectively.
Prove that quadrilaterals A1A2A3A4 and H1H2H3H4 are congruent.

(19) (Kazanluk’97 X) Point F on the base AB of trapezoid ABCD is such that DF =
CF . Let E be the intersection point of the diagonals AC and BD, and O1 and O2

be the circumcenters of 4ADF and 4BCF , respectively. Prove that the lines FE
and O1O2 are perpendicular.

(20) (Bulgaria’00) Point D is a midpoint of the base AB of the acute isosceles 4ABC.
Let E 6= D be an arbitrary point on the base, and O - the circumcenter of 4ACE.
Prove that the line through D perpendicular to DO, the line through E perpendic-
ular to BC, and the line through B parallel to AC intersect in one point.

4. Compositions of Rotations

(21) Prove that the composition of two rotations ρ1(O1, α1) and ρ2(O2, α2) about differ-
ent centers O1 and O2 is:
(a) rotation if α1 + α2 6= kπ (k ∈ Z);
(b) translation if α1 + α2 = 2kπ (k ∈ Z);
(c) central symmetry if α1 + α2 = (2k + 1)π (k ∈ Z).

(22) (G267) On the sides of a convex quadrilateral draw externally squares. Prove that
the quadrilateral with vertices the centers of the squares has equal perpendicular
diagonals.
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(23) (G268) Given two equally oriented equilateral triangles AB1C1 and AB2C2 with
centers O1 and O2, respectively, let M be the midpoint of B1C2. Prove that
4O1MB2 ∼ 4O2MC1.

(24) (G269) A hexagon ABCDEF is inscribed in a circle of radius r so that AB = CD =
EF = r. Let the midpoints of BC, DE, FA be L,M,N respectively. Prove that
4LMN is equilateral.

(25) (Napoleon) If three equilateral triangles ABC1, BCA1 and CAB1 are constructed
off the sides of 4ABC, show that the centers of these equilateral triangle form
another equilateral triangle. Prove also that AA1, BB1 and CC1 are concurrent
and have same lengths. Can you identify the medicenter of 4O1O2O3 with some
distinguished point of 4ABC?

5. Metric Relations and Geometric Loci of Points

(26) (Stuard) Prove that if point D lies on the side BC of 4ABC, and BC = a, CA = b,
AB = c, BD = m, CD = n, AD = d, then d2a = b2m + c2n− amn. In particular,
for the median AM in 4ABC we have

4AM2 = 2(b2 + c2)− a2.

(27) (Kazanluk’95 X) Given 4ABC with sides AB = 22, BC = 19, CA = 13,
(a) If M is the medicenter of 4ABC, prove that AM2 + CM2 = BM2.
(b) Find the locus of points P in the plane such that AP 2 + CP 2 = BP 2.
(c) Find the minimum and maximum of BP if AP 2 + CP 2 = BP 2.

(28) (G272) Given 4ABC, find the locus of points M in the plane such that MA2 +
MB2 = MC2.

(29) (G273) Given tetrahedron ABCD, find the locus of points M in such that MA2 +
MB2 + MC2 = MD2. How about MA2 + MB2 = MC2 + MD2?

(30) (UNICEF’95) Given a fixed segment AB and a constant k > 0, find the locus of
points C in the plane such that in 4ABC the ratio of some side to the altitude
dropped to this side equals k.

(31) (UNICEF’95) We are given 4ABC in the plane. A rectangle MNPQ is called
circumscribed around 4ABC if on each side of the rectangle there is at least one
vertex of the triangle. Find the locus of all centers O of the rectangles MNPQ
circumscribed around 4ABC.

(32) (84.22) The orthogonal projections of a right triangle onto the planes of two faces of
a regular tetrahedron are themselves regular triangles of sides 1. Find the perimeter
of the right triangle.

(33) (84.42) Given a pyramid SABCD whose base is the parallelogram ABCD. Let N
be the midpoint of BC. A plane γ moves in such a way that it always intersects
lines SC, SA and AB in points P , Q and R and

CP

CS
=

SQ

SA
=

AR

AB
.

Point M on line SD is such that line MN is parallel to plane γ. Find the locus of
points M as γ runs over all possible positions.
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HINTS

1 Use vectors. If O is the center of k, then
−→
MA=

−→
MO +

−→
OA. The sum equals

4(MO4 + 4MO2R2 + R4), where R is the radius of k.

3 Let M be an arbitrary point in the plane, and g be a line perpendicular to OM .
Denote by g′ the image of g under rotation ρ(O,α), and by M1 the intersection of g
and g′. Consider the composition φ = θρ1 where ρ1(O,α/2) is rotation, and θ(O, k =
1/(cos(α/2))) is a homothety. Then φ is a homothety with ratio k = 1/(cos(α/2)).
In our case, 4ABC ∼ 4A0B0C0 with ratio k = 1/2 (A0 is the midpoint of BC,
etc.), and 4A0B0C0 ∼ 4A1B1C1 with ratio k = 1/(cos(α/2)). Hence the ratio
of similarity between 4ABC and 4A1B1C1 is k = 1/2(cos(α/2)) (If α = π, then
BC||B′C ′ and 41B1C1 doesn’t exist.

4-5 Use Problem 4. In particular, kA1B1 = AC = kC1D1.

6 Let OQ be a perpendicular to g with Q ∈ g, and the line OQ intersect k in P and S
with P between S and Q. Let M and N be the points of tangency of k and k1, and
k1 and g, respectively. Show that SP · SQ = SM · SN . Repeating for k2, conclude
that S has the same tangential distance from k1 and from k2, hence ST is tangent
to k1 and k2. The locus of T is a circle with center S and radius

√
SP · SQ, minus

the two diametrically opposite points on a line through S parallel to g.

7 Apply inversion fixing k and sending K to a line. Reduce to Problem 6.

8 Express the two diagonals as vector sums of all vectors pointing from a vertex of
the original quadrilateral to a corresponding center of a square; then use rotation
by 90◦ argument.

9 Consider the rotations ρ1(O1, 2π/3) and ρ2(B2, π/3).

10 Show that
−→
LN maps to

−→
LM after rotation by 60◦ around L.

12 Let G be the centroid of all points, and G′ the centroid of A1, ..., An−2. The line

through G′ perpendicular to An−1An is parallel to
−→

OAn−1 +
−→

OAn. Correspondingly,
for every point S on this line we have:
−→
OS=

−→
OG′ +λ(

−→
OAn−1 +

−→
OAn) =

n

n− 2

−→
OG +(λ− 1

n− 2
)(

−→
OAn−1 +

−→
OAn).

For λ = n/(n− 2) we have
−→
OS= n

n−2

−→
OG.

13 Construct parallelogram AGBC with diagonal AB and GC. If O and N are the
midpoints of AB and MC, respectively, then MG2 = 4NO2 = CA2 + CB2 − AB2

- use the formula for the median 4m2
c = 2a2 + 2b2 − c2.
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