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Given a positive integer, how do you check whether it is prime (has itself and 1 as its
only two positive divisors) or composite (not prime)? The simplest answer is of course to try
to divide it by every smaller integer. There are various ways to improve on this exhaustive
method, but they are not very practical for very large candidate numbers. So for a long
time (centuries!), mathematicians have been interested in more efficient ways both to test
for primality and to find complete factorizations. Nowadays, these questions have practical
interest as well: large primes are needed for the RSA encryption algorithm (which among
other things protects secure Web transactions), while factorization methods would make it
possible to break the RSA system.

While factorization is still a hard problem (to the best of my knowledge!), testing large
numbers for primality has become much easier over the years. In this note, I explain three
techniques for testing primality: the Fermat test, the Miller-Rabin test, and the new Agrawal-
Kayal-Saxena test.

1 The Fermat test

Recall Fermat’s little theorem: if p is a prime number and a is an integer relatively prime to
p, then

ap−1 ≡ 1 (mod p).

Some experimentation shows that this typically fails when p is composite. Thus the Fermat
test for checking the primality of an integer n:

1. Pick an integer a ∈ {2, . . . , n− 1}.

2. Compute gcd(a, n); if it’s greater than 1, then stop: n is composite.

3. Compute an−1 (mod n). If it’s not 1, then stop: n is composite.

4. Um, that’s it. You can repeat with a different a if you want.

This test is nice because it’s pretty simple and it’s efficient. In theoretical terms, this
test is polynomial time in the length of the input–to compute the GCD and the modular
exponentiation each require a number of steps which is polynomial in the number of digits
of n, and not a polynomial in n or some power of n. (The exponentiation can be done by
repeated squaring: compute a2 (mod n), a4 (mod n), and so on, then combine the powers
of 2 you need at the end. Oh, and make sure you keep reducing modulo n at each step so the
numbers don’t get any bigger than n.) So it’s practical even for numbers which are hundreds
of digits long.
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This test is not so nice because it has serious difficulty confirming with certainty that a
number is prime. That’s because there are some composite numbers that will always sneak
past step 3! An integer n is said to be a Carmichael number if an−1 ≡ 1 (mod n) whenever
a is coprime to n. There are in fact infinitely many Carmichael numbers, the smallest of
which is 561 = 3 × 11 × 17. The only way to establish the compositeness of a Carmichael
number using the Fermat test is to stumble across an a which is divisible by one of the prime
factors of the number, i.e., to factor the number.

2 Interlude: the structure of (Z/nZ)∗

This stuff isn’t needed for the primality tests, but it may be useful for the problems at the
end.

Let (Z/nZ)∗ be the set of numbers modulo n which have no common factor with n other
than 1; this is a set of size φ(n), where φ is Euler’s totient function: if n = pe1

1 · · · pek
k , then

φ(n) = pe1−1
1 (p1 − 1) · · · pek−1

k (pk − 1).

(For example, if p and q are prime, then φ(p) = p − 1, φ(p2) = p(p − 1), and φ(pq) =
(p − 1)(q − 1).) The numbers which represent elements of (Z/nZ)∗ are precisely the ones
that have reciprocals modulo n.

We recall in passing why Euler introduced this function: he proved that if a is relatively
prime to n, then

aφ(n) ≡ 1 (mod n).

The simplest proof of this (which also gives a proof of Fermat’s theorem, which is the special
case when n is prime) is: let x1, . . . , xφ(n) be representatives of the elements of (Z/nZ)∗.
Then ax1, . . . , axφ(n) are also representatives of the elements of (Z/nZ)∗, so

x1 · · ·xφ(n) ≡ (ax1) · · · (axφ(n)) (mod n),

and cancelling common factors on both sides gives aφ(n) ≡ 1 (mod n).
If n is prime, the set (Z/nZ)∗ has a very nice multiplicative structure.

Theorem 2.1. If n is a prime number, then there exists an integer g such that each element
of (Z/nZ)∗ is represented by a power of g.

Such an element g is called a primitive root of n. There are a few additional cases where
primitive roots exist: if n is a prime power, or twice a prime power.

3 The Miller-Rabin test

By using a bit more information about the structure of (Z/nZ)∗, one can get a better test,
called the Miller-Rabin test.
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1. If n is even, stop: there is a much easier test available!

2. Choose an integer a from {2, . . . , n− 1} uniformly at random.

3. Factor n− 1 as 2tm, where m is odd.

4. Compute b = am (mod n).

5. If b ≡ ±1 (mod n), then stop: n is probably prime.

6. Otherwise, repeat the following t− 1 times. Replace b by b2. if b ≡ −1 (mod n) then
stop: n is probably prime. If b ≡ 1 (mod n) then stop: n is composite. Otherwise,
continue.

7. If we get this far, stop: n is composite.

This one has a similar defect to the Fermat test: it is unable to state with certainty that n
is prime. But it’s not as bad as the Fermat test, because no composite n can defeat the test
“too often”.

First of all, let’s see why n is definitely composite if the algorithm says it is. The key
point is that 1 has only two square roots modulo any odd prime p, namely 1 and −1. (If
a2 ≡ 1 (mod p), then (a + 1)(a− 1) ≡ 0 (mod p) so either a + 1 or a− 1 is divisible by p.)
So if n were prime, b could never become 1 without having been 1 or −1 at the previous
step, so it could never report as composite within the loop. And if n were prime, even if we
got through the loop t− 2 times, at the last step b would have to be ±1 because its square
would be am2t

(mod n) = an−1 (mod n) ≡ 1 (mod n). So n is definitely composite if the
test says it is.

But what if n is composite and the test says it’s prime? Pick a different a and try again!
This time your efforts will not be in vain: if n is composite, it can be shown the probability
that any one choice of a will fail to flag n as composite is at most 1/4. (The idea: if n is
not a prime or prime power, then there are at least four square roots of 1 modulo n, so if
we happen to get to 1 by repeated squarings, there’s a good chance we went through some
other square root of 1 besides -1.)

For “industrial grade” applications, this is good enough; applying the test, say, 50 times
guarantees that the probability of a composite sneaking past the test is imperceptibly small.
It does not and cannot, however, actually prove that n is prime. It turns out that one can
prove that it is enough to check all values of a in a small range (from 1 to 70(log n)2) to
ensure that n is prime, but only assuming a well-believed but currently intractable conjecture
in number theory (the Extended Riemann Hypothesis, a special case of which is one of the
“million dollar problems” of the Clay Mathematics Institute).

There are also some “almost polynomial time” algorithms for producing a proof that n
is prime, but they use much more sophisticated mathematics than I can discuss right now
(elliptic and hyperelliptic curves). So it was a bit of a surprise when in August 2002, Agrawal,
Kayal and Saxena produced a polynomial-time algorithm that can determine whether or
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not n is prime; the surprise is that their algorithm uses nothing fancier than the theory
of polynomials over (Z/pZ)! (Not to mention that Kayal and Saxena at the time were
undergraduates doing a research project with Agrawal!)

4 Interlude: finite fields

Again, you can find this stuff in any good abstract algebra book. One of my favorites is
Algebra, by Michael Artin.

Let n be a prime number and h(x) = cnx
n + · · · + c0 a polynomial over Z/nZ. Then

it makes sense to say a ≡ b (mod n, h(x)) for polynomials a, b with integer coefficients (or
coefficients in Z/nZ); it means that a−b can be written as a multiple of h(x) plus a multiple
of n.

In case n is prime, and h is monic (cn = 1) and irreducible mod n, then nicer things
happen. In this case, the set R of equivalence classes of polynomials modulo n and h(x) is
what is called a field in abstract alebra. This means that not only can you add, subtract
and multiply modulo n and h(x), but you can also divide: for every polynomial P which is
not congruent to zero modulo n and h(x), there exists a polynomial Q such that PQ ≡ 1
(mod n, h(x)).

For example, say n = 3 and h(x) = x2 + 1. Then each element of R can be represented
as a + bx, where a, b are elements of Z/3Z and we multiply using the rule x2 = −1. So what
we have is a “mod 3” version of the complex numbers!

One nice property about fields is that polynomial equations over fields behave the way
you expect. Namely, let Q(y) be a monic polynomial whose coefficients are in R. (That is,
the coefficients of Q are themselves polynomials in x.) Then the number of roots of Q(y) in
R is at most the degree of Q, just like over the real or complex numbers! And in fact, the
same proof works: if r1 is a root of Q, then Q factors as (y− r1)Q1(y), where Q1 has degree
one less than that of Q. And so on: once we write down d = deg(Q) roots, then we must
have

Q(y) = (y − r1) · · · (y − rd).

We saw an example of this once before: if p is prime, then Z/pZ is itself a field, obtained by
taking h(x) = x, and there are at most two square roots of 1 in Z/pZ.

5 The Agrawal-Kayal-Saxena test

The basic idea of the AKS test is this: while it is possible to have a composite number n for
which an−1 ≡ 1 (mod n) for most integers n, it is quite hard to have the relation

(x + 1)n ≡ xn + 1 (mod n)

between polynomials.
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Theorem 5.1. If the polynomial (x + 1)n − xn − 1 has all coefficients divisible by n, then n
is a prime power.

As given, this is not a good primality test, because the polynomial (x + 1)n− xn− 1 has
n different coefficients to check, which is too many. Instead, we can check a consequence of
this, which we write in the parlance of the previous section as

(x + 1)n ≡ xn + 1 (mod n, xr − 1).

For r = 1, this is the Fermat test again, but for r > 1 this is a new criterion.
With that idea in mind, here is the AKS primality test.

1. Check whether n1/k is an integer for any of k = 2, . . . , blog2 nc. If so, stop: n is
composite.

2. Find the smallest prime r such that, for q the largest prime dividing r − 1, we have

n(r−1)/q 6≡ 1 (mod r) and

(
2q − 1

q

)
≥ n2b

√
rc.

3. Check that n has no prime divisors less than or equal to r. If it does, stop; n is
composite.

4. Check that (x + b)n ≡ xn + b (mod n, xr − 1) for b = 1, . . . , q. If not, stop: n is
composite.

5. Stop: n is prime.

I’m going to gloss over the subtlety of why r is not too large. A hard theorem in analytic
number theory (due to Fouvry) shows we can take r ≤ c(log n)6 for some constant c; in
practice, it appears one can take r ≤ c(log n)2.

Instead, I’ll focus on why the test actually works; i.e., why it is that if we get to the end
that we know for sure that n is prime. Note that there must be a prime divisor p of n such
that p(r−1)/q 6≡ 0, 1 (mod r), or else n(r−1)/q would be congruent to 0 or 1 mod r.

We first parlay the fact that (x + b)n ≡ xn + b (mod p, xr − 1) for b = 1, . . . , q into
something slightly stronger. First replace x by xni

; we then get

(xni

+ b)n ≡ xni+1

+ b (mod p, xnir − 1).

Since xnir − 1 is divisible by xr − 1, we also have this modulo p and xr − 1. By induction,
we then have

(x + b)ni ≡ xni

+ b (mod p, xr − 1).

Since P p + Qp ≡ (P + Q)p (mod p) for any polynomials P, Q, we also have (using bpj ≡ b
(mod p) by Fermat’s theorem)

(x + b)nipj ≡ xnipj

+ b (mod p, xr − 1).
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If we run i, j from 0 to b
√

rc, we get (1 + brc)2 > r products nipj; by the pigeonhole
principle, two of them are congruent modulo r. Call those t = nipj and u = nkpl, with t ≥ u.
Suppose that t 6= u. Then we know that

(x + b)t ≡ xt + b ≡ xu + b ≡ (x + b)u (mod p, xr − 1)

for b = 1, . . . , q.
Now I need a fact from abstract algebra (or any sufficiently good number theory book):

the polynomial xr − 1 factors over Z/pZ into irreducible polynomials, each of whose degree
is the smallest integer d such that pd ≡ 1 (mod r). Let h(x) be one such factor. In our
case, since d must divide r − 1 (by Fermat’s theorem), and p(r−1)/q 6≡ 1 (mod r), d must be
a multiple of q. All that I really need is d ≥ q.

Define the field R as the set of equivalence classes modulo p and h(x). Then the equation
yt−u− 1 has at most t− u ≤ n2b

√
rc solutions. However, we can produce more solutions than

that: for any nonnegative integers e1, . . . , eq with
∑

ei ≤ q − 1, we can take

y = (x + 1)e1 · · · (x + q)eq ,

and these give
(

2q
q−1

)
distinct elments of R, e.g. by “stars-and-bars” counting. (Why are

these all distinct in R? The difference between two such products is a polynomial of degree
q− 1 < d, so cannot be a multiple of h modulo p.) That contradicts the third fact above, so
our assumption t 6= u is incorrect.

So we now have t = u. Writing t = nipj and u = nkpl, we must then have ni−k = pl−j,
so n is a power of p. We ruled out n being a perfect power in the first step, so n must be
prime!

Slight downer: this is not (yet) practical, because even though it is a polynomial-time
algorithm, the computations are still a bit on the largish side. Recent improvements by
several experts in computational number theory have improved the situation, so a practical
version may be coming soon.

6 Problems

1. Prove that 561 is a Carmichael number. (Hint: you can do better than Euler’s theorem
in this case. Consider the powers of a modulo each prime factor of 561 separately.)

2. Find another Carmichael number besides 561. (Hint: you might want to try numbers
of the form 3pq, with p and q prime.)

3. Prove Theorem 5.1. (Hint: look at the coefficient of xpk
for p a prime factor of n such

that pk divides n but pk+1 does not.)

4. (Unsolved problem!) Is it true that if (x + 1)n ≡ xn + 1 (mod n, xr − 1) for r an odd
prime, then either n is a prime power or n2 ≡ 1 (mod r)? If so, then one can give
a much more efficient version of the AKS test; large computer searches have failed to
yield any counterexamples. Even the case r = 3 would be of interest.
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