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The problems:

1. Prove that given any five points in the plane, no three collinear, some four of them
form the vertices of a convex quadrilateral.

2. Let r ≥ 1 be a real number with the property that for any positive integers m,n such
that m divides n, bmrc divides bnrc. (Here bxc denotes the greatest integer less than
or equal to x.) Prove that r is an integer.

3. Let ABC be a triangle with a right angle at A, and let H be the foot of the altitude
from A. Prove that the radii of the inscribed circles of ABC, ABH, ACH add up to
the length of the segment AH.

4. Find all triples (x, y, z) of positive integers such that 3x + 4y = 5z.

5. Let a, b, c be positive real numbers such that a+b+c ≥ abc. Prove that a2+b2+c2 ≥ abc.
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The solutions:

1. We first note that given any four points in the plane, no three collinear, either they
form a convex quadrilateral or one of them lies inside the triangle formed by the other
three. The easiest way to see this is to draw three of the points and the three lines
joining them, then notice what happens if the fourth point lands inside each of the
seven regions formed by the three lines. (Say A, B, C are three of the points. If the
fourth point D lands inside the triangle ABC, we are done. If it lies within the angle
formed by the lines AB and AC away from the triangle, then BCD contains A, and
so on.)

Take four of the points. If they form a convex quadrilateral, we are done, so sup-
pose they do not. Then one of the points, say D, lies within the triangle formed
by the other three, say A, B, C. The fifth point E must lie within one of the angles
∠ADB,∠BDC, ∠CDA. Without loss of generality, say it lies within ∠ADB. Then
ADBE is a convex quadrilateral.

2. I use {x} to mean the fractional part of x, i.e., {x} = x − bxc. Suppose r is not an
integer. Pick an integer m such that mr ≥ 2 and mr is not an integer. (This is easy
if r is irrational. If r is rational, just make sure m is large enough and not a multiple
of the denominator of r.) Then 0 < {mr} < 1; let t be the smallest integer such that
t{mr} ≥ 1. Then for i = 1, . . . , t−1, we have {imr} = i{mr}, so bimrc = ibmrc. But
{tmr} = t{mr} − 1, so btmrc = tbmrc + 1, which is not a multiple of bmrc because
the latter is at least 2.

Note: various solutions are possible. One that I gave at the talk uses the following
lemma whose proof I leave to you: for any real numbers x and y, bx + yc is always
equal to either bxc+ byc or bxc+ byc+ 1.

3. We first recall a general fact about the inscribed circle of a triangle. Let ABC be an
arbitrary triangle, and suppose the inscribed circle of the triangle touches BC at X,
CA at Y , and AB at Z. Then

AY = AZ =
AB + CA−BC
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and so on. This comes from the equalities AY = AZ,BZ = BX, CX = CY from equal
tangents (two tangents from the same point to the same circle have the same length)
and the equalities BX + XC = BC, CY + Y A = CA, AZ + ZB = AB by solving the
resulting system of linear equations.

In the case at hand, A is a right angle. If we let I denote the center of the inscribed
circle and r the inradius, then AY IZ is a rectangle and IY = IZ = r, so AY IZ is
actually a square. Hence r = AY = (AB + AC −BC)/2.

Applying the above formula to ABH and ACH yields that their inradii are (AH +
BH − AB)/2 and (AH + CH − AC)/2. Adding these three up, we can cancel BH
with AH + CH, AB with AB and AC with AC to get a sum of (AH + AH)/2 = AH.
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Alternate solution: in any triangle, the area is equal to half the inradius times the
perimeter. (Hint: draw the triangles AIB,BIC, CIA, where I is again the center of the
inscribed circle.) Thus the inradius of ABC is equal to (BC×AH)/(AB +BC +CA).
As for the other triangles, note that ABH is similar to ABC with similarity ratio
AB/BC, and likewise ACH is similar to ABC with similarity ratio AC/CH, and so
on.

4. Clearly (x, y, z) = (2, 2, 2) is a solution, and we will show that there are no others. We
first work modulo some small numbers. Taking the equation 3x +4y = 5z modulo 3, we
get 1 ≡ 2z (mod 3), which only happens when z is even. So we may write z = 2a for
some positive integer a. Next, working modulo 4, we see that 3x ≡ 1 (mod 4), which
only happens when x is even, so we may write x = 2b for some positive integer b.

Now rewrite the given equation as

32b = 52c − 22y = (5c − 2y)(5c + 2y).

This means both 5c − 2y and 5c + 2y are powers of 3. If 5c − 2y > 1, then 5c + 2y > 1
also and both 5c − 2y and 5c + 2y must both be multiples of 3; but their difference is
2y+1, which is not divisible by 3, contradiction. Thus we must have 5c − 2y = 1 and
5c + 2y = 32b. Eliminating c yields 2y+1 + 1 = 32b.

Now repeat the argument with the new equation

2y+1 = 32b − 1 = (3b − 1)(3b + 1);

again, both 3b − 1 and 3b + 1 are powers of 2, but their difference is only 2. That can
only happen if 3b − 1 = 2 and 3b + 1 = 4 (we can’t have 3b − 1 = 1 because then
(3b +1)− (3b−1) would be odd, and we can’t have 3b−1 ≥ 4 or else (3b +1)− (3b−1)
would be a multiple of 4). Now we can unwind everything: we have b = 1 and so x = 2;
we have 2y+1 + 1 = 32b and so y = 2; and we have 5c − 2y = 1 and so c = 1 and x = 2.

5. First suppose one of a, b, c is at most 2; without loss of generality, say c ≤ 2. Then

a2 + b2 + c2 ≥ a2 + b2

≥ 2ab [arithmetic-geometric mean inequality]

≥ abc [since c ≤ 2],

so we are done in that case.

On the other hand, if a, b, c ≤ 2, then a2 ≥ a, b2 ≥ b, c2 ≥ c, so

a2 + b2 + c2 ≥ a + b + c ≥ abc

by assumption. So we are done in all cases.
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