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1 Basic facts

I’ll answer half of the title question immediately. For the purposes of this talk, an algebraic
number is a complex number which is the root of a polynomial with integer coefficients. An
algebraic integer is an algebraic number which is the root of a monic polynomial with integer
coefficients.

I’ll say more about why you should care later. For now, let me just give a bunch of
examples to convince you that algebraic numbers crop up all over the place.

• A rational number is an algebraic number; a rational number is an algebraic integer if
and only if it is an integer. For clarity, I’ll refer to the usual integers as the rational
integers.

• For any rational number p/q, the root of unity e2πip/q satisfies the polynomial xq−1 = 0,
and so is an algebraic integer.

• A Gaussian integer, a number of the form a + bi, is an algebraic integer.

• For any rational number p/q, the numbers cos(2πp/q) and sin(2πp/q) are algebraic
integers, and tan(2πp/q) is an algebraic number. Can you explicitly write down poly-
nomials that these are roots of? (These polynomials turn out to have lots of interesting
properties.)

• Given a recurrence relation xn+k = a1xn+k−1 + · · ·+akxn with (rational) integer coeffi-
cients, all solutions can be expressed in terms of some algebraic integers. For example,
the n-th Fibonacci number can be written as

1√
5

[(
1 +

√
−5

2

)n

−
(

1−
√
−5

2

)n]
.

• The eigenvalues of a matrix with (rational) integer entries are algebraic integers. This
is one way algebraic numbers come up in topology, group theory, algebraic geometry,
combinatorics, etc.

Here are some basic facts about algebraic numbers. These may not be obvious at first;
I’ll mention two ways to prove them in a moment.

1. The set of algebraic numbers is closed under addition, subtraction, multiplication and
division. The set of algebraic integers is closed under addition, subtraction and multi-
plication, but not division.
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2. The root of a polynomial whose coefficients are algebraic numbers (resp., algebraic
integers) is one also.

The first method involves symmetric polynomials, which are interesting enough in their
own right that I’ll discuss them in some detail.

Theorem 1. Let P be a symmetric polynomial (with integer coefficients) in x1, . . . , xn. Then
P can be expressed as a polynomial (with integer coefficients) in the elementary symmetric
functions σ1, . . . , σn given by

tn + σ1t
n−1 + · · ·+ σn = (t + x1) · · · (t + xn).

For example, σ1 = x1 + · · ·+ xn, σ2 =
∑

i<j xixj, and so on.
The proof of this is a successive elimination argument of a form quite common in com-

putational algebraic geometry. It’s related to something called a “Gröbner basis”.

Proof. The idea is to deal with the terms of P “from the outside in”. That is, we first deal
with terms which are as “unbalanced” as possible.

We can write
P =

∑
a1≥···≥an

∑
sym

ca1,...,anxa1
1 · · ·xan

n .

We put an ordering on n-tuples by saying that (a1, . . . , an) > (b1, . . . , bn) if and only if
na1 + (n − 1)a2 + · · · + an > nb1 + (n − 1)b2 + · · · + bn. Now sort the terms in decreasing
order by na1 + (n − 1)a2 + · · · + an. Choose the biggest term (a1, . . . , an) and notice that
the polynomial

σa1−a2
1 · · ·σan−1−an

n−1 σan
n

has the same largest term, and the coefficient of that term is 1. So subtract off ca1,...,an times
this product, and repeat.

I’ll demonstrate why this is a useful fact by showing that the product of two algebraic
integers is an algebraic integer. Given two algebraic integers which are the roots of the monic
polynomials P and Q with rational integer coefficients, let α1, . . . , αm and β1, . . . , βn be the
roots of P and Q, respectively. Now consider the polynomial

m∏
i=1

n∏
j=1

(x− αiβj).

Now
∏n

j=1(x − αiβj) can be viewed as a symmetric polynomial in β1, . . . , βn, if I treat x
and αi as constant. (More precisely, if I look at all terms with a fixed power of x and αi,
these together form a symmetric polynomial in the βi). By the theorem, this polynomial
is a polynomial in the elementary symmetric functions of the βi, which by assumption are
integers. So we now have a polynomial in x and αi with integer coefficients; we now take
the product over the αi and repeat the argument.
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The second, more modern method, uses some linear algebra. The main idea is that α is
an algebraic number if and only if 1, α, α2, . . . lie in a finite dimensional vector space over
Q. So to show that αβ is algebraic given that α and β are, suppose α satisfies a polynomial
of degree m and β satisfies a polynomial of degree n over Q. Then all of the products αiβj

lie in the vector space spanned by αkβl for k < m, l < n. In particular, all of the (αβ)i lie
in a finite dimensional vector space, so αβ is algebraic.

2 Unique and nonunique factorization

It’s easier to study algebraic numbers as part of a larger structure than on their own. So
we define a number field to be the smallest set containing Q plus some finite set α1, . . . , αn

of algebraic numbers, which is also closed under addition, subtraction, multiplication and
division. We’ll usually denote this number field Q(α1, . . . , αn). We define a ring of integers
to be the set of algebraic integers in a number field.

WARNING: it’s not always obvious what the ring of integers in a number field is. Take
the example Q(

√
D) (D positive or negative). If D ≡ 1 (mod 4), then (1 +

√
−D)/2 is an

algebraic integer; more generally, the integers in the number field are (a + b
√
−D)/2 for

a, b rational integers of the same parity. If D ≡ 2, 3 (mod 4), then the only integers in the
number field are the obvious ones a + b

√
−D for a, b rational integers.

One nice property about the rational integers is unique factorization. Is unique factor-
ization true for other rings of integers? Sometimes yes, sometimes no.

To make that precise, we’ll need some more definitions. define a unit to be an algebraic
integer whose reciprocal is also an algebraic integer. (For example, roots of unity are units,
but there are other units too; we’ll see some later.) We call an element α of a ring of integers
irreducible if whenever you write α = βγ as the product of two elements of the ring, one of β
or γ is a unit. (I didn’t say “prime” because I’m saving that word for later). We say a ring
of integers has unique factorization if whenever an element of a ring of integers is expressed
as a product of irreducible elements, that expression is unique up to changing the order and
multiplying by units.

For example, the Gaussian integers have unique factorization, because they admit an
analogue of the Euclidean division algorithm.

Theorem 2. Given Gaussian integers p and q with q 6= 0, there exist Gaussian integers r
and s with p = qr + s and |s| < |q|.

Proof. Draw the square with vertices 0, q, iq, (1 + i)q. Then p is congruent to a Gaussian
integer z inside (or on the boundary of) the square. Also, the open discs of radius |q| centered
at 0, q, iq, (1 + i)q cover the square completely, so z is within |q| of one corner of the square,
say w. Now take s = z − w; then |s| < |q| and s ≡ p (mod q), so we can set r = (p − s)/q
and we’re done.

Corollary 1. Every (rational) prime congruent to 1 modulo 4 is the sum of two squares;
moreover, this expression is unique up to order and signs.
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Proof. If p ≡ 1 (mod 4), then there exist x and y such that x2 + y2 is divisible by p but not
by p2. Apply the Euclidean algorithm in the Gaussian integers (left for you to write down!)
to x + iy and p; the result will be a Gaussian integer r + si with r2 + s2 = p. Uniqueness is
also left to you.

EXERCISE: Find some other rings of integers which have unique factorization. (For
starters, try Z[

√
−2] and Z[(1 +

√
−3)/2].

On the other hand, consider this example in Z[
√
−5]:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

None of 2, 3, or 1±
√
−5 can be written as a nontrivial product of two elements of Z[

√
−5],

so this ring doesn’t have unique factorization. What to do?
Kummer realized that one could find an algebraic integer in a bigger ring that would

allow you to break up such problem factorizations. (For example, if we toss in
√

2, then it
divides both 1+

√
−5 and 2.) However, it turns out that it’s a little better to work not with

these “ideal numbers”, as Kummer called them, but with the collection of their multiples.
Definition: an ideal in a ring of integers R is a subset S such that

1. for x, y ∈ S, x + y ∈ S;

2. if x ∈ S and r ∈ r, then xr ∈ S.

Example: If R = Z, then an ideal is an arithmetic progression containing 0. More general
example: the principal ideal generated by r ∈ R consists of all multiples of r. But not all
ideals have this form!

Because of the way an ideal is defined, we can work “modulo” an ideal, that is, it makes
sense to write a ≡ b (mod I) because this equivalence respects addition and multiplication.
If I is nonzero, then the number of equivalence classes modulo I is finite; we call this number
the norm of the ideal.

An ideal I is prime if xy ∈ I implies x ∈ I or y ∈ I. For example, if R = Z and I = (n),
then I is prime if and only if n is prime. In general, if I has prime norm, it is a prime ideal,
but the converse is not true; we only know that I has prime power norm. For example, the
ideal (3) in Z[i] is prime, but its norm is 9.

The arithmetic on Z[i]/(3) is not the same as on Z/(9), though! The main distinction is
that in Z[i]/(3), everything not congruent to 0 mod (3) has a multiplicative inverse. (Thus
Z[i]/(3) is an example of a finite field.)

The big theorem about prime ideals is the recovery of unique factorization.

Theorem 3. Every nonzero ideal in a ring of integers has a unique prime factorization.

Corollary 2. If every ideal of a ring of integers R is principal, then R has unique factor-
ization. (Note: the converse is also true.)
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Two ideals I and J in the ring of integers R of a number field K are equivalent if there
exists k ∈ K such that kI = J . (Note that k need not lie in R. If you prefer a definition
within R: I and J are equivalent if there exist nonzero i, j ∈ R such that iI = jJ .) This
equivalence is respected by multiplication.

Theorem 4 (Minkowski). The number of equivalence classes of ideals in a ring of integers
is finite.

This number is called the class number of the number field.

Theorem 5 (Gauss). For n > 3 not divisible by 4, the number of primitive (having no
common factor) triples (x, y, z) of integers such that x2 + y2 + z2 = n is equal to 12 times
the class number of Q(

√
−n) if n ≡ 1, 2 (mod 4), or 24 times the class number of Q(

√
−n)

if n ≡ 3 (mod 4).

Note: Gauss didn’t express this theorem in terms of number fields, but in terms of binary
quadratic forms ax2 +bxy+cy2 whose discriminant b2−4ac equals −4n, if n ≡ 1, 2 (mod 4),
or −n, if n ≡ 3 (mod 4). Two forms are equivalent if you can get from one to the other
by making a variable substitution of the form u = px + qy, v = rx + sy where p, q, r, s are
integers with ps− qr = 1.

EXERCISE: Prove that the number of equivalence classes of forms equals the class
number of Q(

√
−n).

3 Diophantine equations

One important use of algebraic numbers is to answer questions about Diophantine equations.
We have already seen one example of this (representing an integer as the sum of two squares);
let’s consider a few more examples.

The equation x2 − Dy2 = 1 is (mis)named “Pell’s equation”. Over Q(
√
−D), we can

factor the left side and rewrite the equation as

(x + y
√

D)(x− y
√

D) = 1.

This makes clear the multiplicative structure of the set of solutions: if (a, b) and (c, d) are
solutions, then

1 = (a + b
√

D)(c + d
√

D)(a− b
√

D)(c− d
√

D)

= [(ac + bdD) + (ad + bc)
√

D][(ac + bdD)− (ad + bc)
√

D]

= (ac + bdD)2 −D(ad + bc)2.

Moreover, we can sort all solutions into increasing order by x+ y
√

D (which is an increasing
function of x for x ≥ 0, given that x2 −Dy2 = 1). Now it’s easy to see that all solutions in
positive integers are “powers” of the smallest solution, assuming that any solutions exist.
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There are several ways to show that solutions exist. One method uses continued fractions
and has been known at least for 1000 years (it occurs in an old Indian text); it is probably
the best method for explicitly computing solutions.

ASIDE: What does this have to do with algebraic numbers? What we’ve done is to
classify the algebraic integers in the field Q(

√
D) whose products with their conjugates

equal 1. An analogous classification can be made for an arbitrary number field, which solves
the Pell equation along the way.

What about the equation x2−Dy2 = n when n 6= 1? The situation is more complicated,
so one needs to know a bit more to make progress. For example, given that Q(

√
2) has

unique factorization, one can prove the following. (Note the resemblance to the proof that
a prime p ≡ 1 (mod 4) is the sum of two squares.)

Theorem 6. For n a squarefree integer, the equation x2−2y2 = n has a solution in integers
if and only if it has a solution modulo n.

Proof. By multiplicativity, it suffices to show that x2 − 2y2 = n has a solution for n = −1,
n = 2, and n = p for p an odd prime such that 2 is congruent to a square modulo p. For
n = −1, use 12 − 2 · 12 = −1; for n = 2, use 22 − 2 · 12 = 2.

Now suppose p is an odd prime such that 2 is congruent to a square modulo p. Find x, y
such that x2− 2y2 is divisible by p but not by p2 (if it is divisible by p2, fix that by replacing
x with x + p). Now form the ideal (x + y

√
D, p). Its norm divides p2 and x2 − 2y2, so it

must be p.

Incidentally, one can replace 2 by any integer D such that Q(
√

D) has unique factoriza-
tion, provided that x2−Dy2 = −1 has a solution. It turns out (but is by no means obvious!)
that unique factorization implies that D is prime, and it is believed (but not proved) that
Q(
√

D) has unique factorization for about 75% of the primes D. Moreover, existence of a
solution of x2 −Dy2 = 1 then implies D ≡ 1 (mod 4), but not every prime congruent to 1
modulo 4 will work (try D = 5).

For an example of a different flavor, let us find the solutions of the equation x2 +2 = y3.
In the ring Z[

√
−2], which has unique factorization, this factors as

(x +
√
−2)(x−

√
−2) = y3.

Note that x must be odd: if x were even, then x2 + 2 would be divisible by 2 but not by 4,
so could not be a perfect cube. Therefore the ideals (x+

√
−2) and (x−

√
−2) are relatively

prime, and each must be the cube of an ideal. That is, x +
√
−2 and x−

√
−2 are equal to

a unit (which can only be ±1) times a a cube. In particular, we have

x +
√
−2 = (a + b

√
−2)3 = (a3 − 6ab2) + (3a2b− 2b3)

√
−2.

In particular, 3a2b − b3 = 1. Since this is a multiple of b, we must have b = ±1. If b = 1,
then 3a2 − 2 = 1, so a = 1 and x = 5. If b = −1, then −3a2 + 2 = 1, which is impossible.

ASIDE: We didn’t actually need unique factorization: the argument still would go
through if we just knew that the number field had class number not divisible by 3.

Additional examples:
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1. One can prove the law of quadratic reciprocity by working with number fields containing
roots of unity. (Quadratic reciprocity will be described in Oaz’s talk.)

2. Lamé gave a proof of Fermat’s Last Theorem for p-th powers assuming that the number
field Q(e2πi/p) has unique factorization. Unfortunately, this only holds for finitely many
primes p. Fortunately, Kummer gave a proof that also works if the class number of
Q(e2πi/p) is not divisible by p. Unfortunately, no one has proved that there are infinitely
many such p. Fortunately, numerical evidence and heuristics suggest that about 60%
of primes have this property. (More fortunately, Fermat’s Last Theorem has now been
proved by Wiles et al.)

4 Read all about it!

There are tons of books on algebraic number theory out there (some of which don’t assume
very much from classical number theory). Some titles that come to mind (with commentary):

• Esmonde and Murty, Problems in Algebraic Number Theory (beware of the many small
errors, hopefully to be corrected in a future edition)

• Ireland and Rosen, A Classical Introduction to Modern Number Theory (a pretty good
read, I’m told)

• Lang, Algebraic Number Theory (not an easy read, assumes undergraduate algebra)

• Marcus, Number Fields (mostly does examples)

• Neukirch, Algebraic Number Theory (not to be confused with his other books, which
are very difficult reading)

• Pollard and Diamond, The Theory of Algebraic Numbers (the avoidance of abstract
algebra makes this an easy read but obscures certain points)
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