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1 Plan for the day.

The 2001 Bay Area Mathematical Olympiad is on Tuesday, February 27. I want
to briefly discuss two vague questions: What can you do in the next two weeks
to increase your chances of doing well on this contest? What can you do during
the contest to maximize your score?

Then, let’s walk through a few problems, thinking about (A) how to solve
them – that is, how do you come up with the insight you need to write a solution
and (B) how do you write the solution effectively.

2 One or two topics you might do well to expect

It’s probably foolish to try to predict what topics will come up on this year’s
BAMO – there are too many potential topics and only a few questions. It’s still
worth studying the problems from the two years of BAMOs, and from other
similar olympiads, to get a sense of what sort of questions are likely to be on it.

2.0.1 Inequalities

Many Olympiads have one “inequality” problem every year. (Look at the Cana-
dian Olympiads included here, or look at the British Mathematical Olympiads.
The BAMO had one in 2000, but not in 1999.)

I’m not going to do a full presentation on inequalities – that has been done
in the math circle before! (see http://mathcircle.berkeley.edu/inequalities.pdf
for a copy of Bjorn Poonen’s handout from last year), but some of these are very
commonly used. You can generally get away with citing any of these without
having to reprove them, so long as you use them authoritatively. Rather than
give the formulas here, I’m just going to describe them qualitatively.

• Arithmetic Mean – Geometric Mean inequality For any set of non-negative
numbers, the arithmetic mean is greater than or equal to the geometric
mean, with equality only when all the terms are equal. You can toss the
Harmonic Mean and the Quadratic Mean in here, too.

• Cauchy-Schwarz The absolute value of the dot product of any two vectors
is less than or equal to the product of the lengths of the vectors, with
equality only when the vectors are linearly dependent.

• Hölder If p and q are positive real numbers for which 1/p + 1/q = 1, then
the dot product of any two vectors is less than or equal to the product
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of the p-norm of one vector and the q-norm of the other. (Note when
p = q = 2, this is the Cauchy-Schwarz inequality) (Also note the definition
of a p-norm).

• Jensen For any convex function, the arithmetic mean of a set of values of
the function image taken on a set of input values is greater than or equal to
the value of the function taken at the mean of those input values. (actually
almost all of the above inequalities can be interpreted as instances of
Jensen’s inequality!)

• Re-arrangements and Chebychev If you have the dot product of two vec-
tors (with non-negative components), and you can rearrange the order of
the components of one of the vectors, you will maximize the dot product
by being sure the largest components of the two vectors are multiplied
together, followed by the next largest, etc. – you’ll minimize the product
by being sure the largest of one is paired with the smallest of the other,
the second largest with the second smallest, etc. Chebychev inequality
comes from this.

• Other? Geometric inequalities?

Sometimes inequalities are phrased in terms of “find the maximum” or “find
the minimum”. Many similar techniques apply here. This leads into extremal
problems . . .

2.1 Invariants, Monovariants

There has been a lot of attention to these concepts already during the math
circle, and with good reason. It is definitely true that many olympiad-style prob-
lems involve invariants or monovariants. See http://mathcircle.berkeley.edu/BMC3/monovar.pdf
for Gabriel Carroll’s handout from this year with many good problems in it. In-
cidentally, that handout includes a proof of the rearrangement inequality above.

Which problems from the last two years of BAMOs actually use invariants
or monovariants in their solutions?

2.2 Other topics?

Well, there’s always at least one problem involving some geometric concept, but
I quailed before trying to come up with a brief summary of these concept.

Obviously, there will be some problems that require at least elementary com-
binatorics and probably there will be one requiring elementary number thoery.
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3 Various Problems

3.1 (Iran, 1999) Does there exist a positive integer which is a power of 2 from
which we can obtain another power of 2 by rearranging its digits?

3.2 (Iran, 1999) Consider the triangle ABC with the angles B and C each larger
than 45 degrees. Construct right isosceles triangles CAM and BAN outside the
triangle ABC with right angles 6 CAM and 6 BAN and right isosceles triangle
BPC inside ABC with right angle 6 BPC . Prove that the triangle MNP is also
right isosceles.

3.3 (Iran, 1999) We have a 100× 100 lattice with a tree on each of the 10000
points. (The points are equally spaced.) Find the maximum number of trees
we can cut such that if we stand on any cut tree, we see no trees which have
been cut. (In other words, on the line connecting any two trees that have been
cut, there should be at least one tree which hasn’t been cut.)

3.4 (Iran, 1999) Find all natural numbers m such that :

m = 1/a1 + 2/a2 + 3/a3 + ... + 1378/a1378

where a1, . . . , a1378 are natural numbers.

3.5 (Iran, 1999) Consider the triangle ABC. P, Q, and R are points on the
sides AB, AC, and BC respectively. A’ , B’ and C’ are points on the lines PQ
, PR and QR respectively such that AB is parallel to A’B’, AC is parallel to
A’C’, and BC is parallel to B’C’. Prove that AB/A’B’ = SABC/SPQR (SABC
means the area of the figure ABC)

3.6 (Iran, 1999) A1, A2, . . . , An are n distinct points on the plane. We color
the middle of each line AiAj (i 6= j) red. Find the minimum number of red
points.

3.7 (Putnam 1988) Show that every (positive) composite integer is expressible
as xy + xz + yz + 1 with x, y, and z positive integers.

3.8 (Putnam 1986) What is the units digit of⌊
1020000

10100 + 3

⌋
?

3.9 (Bulgaria 1980) Prove that for every 3 non-negative integers a, b, and c,
the inequality

a3 + b3 + c3 + 6abc ≥ (a + b + c)3

4
holds, with equality only when two of these numbers are equal and the third is
zero.
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3.10 (Bulgaria 1981) Prove that if n is a positive integer for which the number
1 + 2n + 4n is prime, then n is a power of 3.

3.11 (Bulgaria 1985) Let P (x) be a non-constant polynomial with integer
coefficients. For any positive integers n and k, show that there are n consecutive
positive integers a,a+1,. . . , a+n−1 such that each of P (a), P (a+1), . . . P (a+
n− 1) has at least k prime divisors.

3.12 (British Math Olympiad 1991) Prove that the number 3n +2×17n, where
n is a non-negative integer, is never a perfect square.

3.13 (British Math Olympiad 1991) Find all positive integers k such that the
polynoimal x2k+1 + x + 1 is divisible by the polynomial xk + x + 1. For each
such k, specify integers n for which xn + x + 1 is divisible by xk + x + 1.

3.14 (British Math Olympiad 1991) The quadrilateral ABCD is inscribed in
a cricle of radius r. The diagonals AC and BD meet at E. Prove that if AC is
perpendicular to BD, then EA2 + EB2 + EC2 + ED2 = 4r2. Is it true that if
this equation holds, then AC is perpendicular to BD? justify your answer.

3.15 (British Math Olympiad 1991) Find, with proof, the minimum value of
(x+y)(y+z) where x, y, and z are positive real numbers satisfying the condition
xyz(x + y + z) = 1.

3.16 (British Math Olympiad 1991) Find the number of permutations j1, j2, j3, j4, j5, j6
of 1,2,3,4,5,6 with the property that, for no integer n, 1 ≤ n ≤ 5, do j1, j2, . . . , jn

form a permutation of 1, 2,= ldots, n.

3.17 (British Math Olympiad 1991) Show that if x and y are positive integers
such that x2 + y2 − x is divisible by 2xy, then x is a perfect square.

3.18 (British Math Olympiad 1991) A ladder of length l rests against a vertcial
wall. Suppose that there is a rung on the ladder which has the same distance
d from both the wall and the (horizontal) ground. Find explicitly, in terms of l
and d, the height from the ground that the ladder reaches up the wall.

3.19 (Canada, 2000) At 12:00 noon, Anne, Beth and Carmen begin running
laps around a circular track of length three hundred meters, all starting from
the same point on the track. Each jogger maintains a constant speed in one of
the two possible directions for an indefinite period of time. Show that if Anne’s
speed is different from the other two speeds, then at some later time Anne will
be at least one hundred meters from each of the other runners. (Here, distance
is measured along the shorter of the two arcs separating two runners.)

3.20 (Canada, 2000) A permutation of the integers 1901, 1902, . . . , 2000 is a
sequence a1, a2, . . . , a100 in which each of those integers appears exactly once.
Given such a permutation, we form the sequence of partial sums

s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, . . . , s100 = a1 + a2 + · · ·+ a100.
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How many of these permutations will have no terms of the sequence s1, . . . , s100

divisible by three?

3.21 (Canada, 2000) Let A = (a1, a2, . . . , a2000) be a sequence of integers each
lying in the interval [−1000, 1000]. Suppose that the entries in A sum to 1.
Show that some nonempty subsequence of A sums to zero.

3.22 (Canada, 2000) Let ABCD be a convex quadrilateral with

6 CBD = 26 ADB,

6 ABD = 26 CDB

and AB = CB.

Prove that AD = CD.

3.23 (Canada, 2000) Suppose that the real numbers a1, a2, . . . , a100 satisfy

a1 ≥ a2 ≥ · · · ≥ a100 ≥ 0,

a1 + a2 ≤ 100
and a3 + a4 + · · ·+ a100 ≤ 100.

Determine the maximum possible value of a2
1 + a2

2 + · · · + a2
100, and find all

possible sequences a1, a2, . . . , a100 which achieve this maximum.

3.24 (Canada, 1999) Find all real solutions to the equation 4x2−40[x]+51 = 0.
Here, if x is a real number, then [x] denotes the greatest integer that is less

than or equal to x.

3.25 (Canada, 1999) Let ABC be an equilateral triangle of altitude 1. A circle
with radius 1 and center on the same side of AB as C rolls along the segment
AB. Prove that the arc of the circle that is inside the triangle always has the
same length.

3.26 (Canada, 1999) Determine all positive integers n with the property that
n = (d(n))2. Here d(n) denotes the number of positive divisors of n.

3.27 (Canada, 1999) Suppose a1, a2, . . . , a8 are eight distinct integers from
{1, 2, . . . , 16, 17}. Show that there is an integer k > 0 such that the equation
ai − aj = k has at least three different solutions. Also, find a specific set of 7
distinct integers from {1, 2, . . . , 16, 17} such that the equation ai − aj = k does
not have three distinct solutions for any k > 0.

3.28 (Canada, 1999) Let x, y, and z be non-negative real numbers satisfying
x + y + z = 1. Show that

x2y + y2z + z2x ≤ 4
27

,

and find when equality occurs.
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3.29 (Canada, 1998) Determine the number of real solutions a to the equation[
1
2

a

]
+

[
1
3

a

]
+

[
1
5

a

]
= a .

Here, if x is a real number, then [x ] denotes the greatest integer that is less
than or equal to x.

3.30 (Canada, 1998) Find all real numbers x such that

x =
(

x− 1
x

)1/2

+
(

1− 1
x

)1/2

.

3.31 (Canada, 1998) Let n be a natural number such that n ≥ 2. Show that

1
n + 1

(
1 +

1
3

+ · · ·+ 1
2n− 1

)
>

1
n

(
1
2

+
1
4

+ · · ·+ 1
2n

)
.

3.32 (Canada, 1998) Let ABC be a triangle with 6 BAC = 40◦ and 6 ABC =
60◦. Let D and E be the points lying on the sides AC and AB, respectively,
such that 6 CBD = 40◦ and 6 BCE = 70◦. Let F be the point of intersection
of the lines BD and CE. Show that the line AF is perpendicular to the line
BC.

3.33 (Canada, 1998) Let m be a positive integer. Define the sequence a0, a1, a2, . . .
by a0 = 0, a1 = m, and an+1 = m2an − an−1 for n = 1, 2, 3, . . . . Prove that an
ordered pair (a, b) of non-negative integers, with a ≤ b, gives a solution to the
equation

a2 + b2

ab + 1
= m2

if and only if (a, b) is of the form (an, an+1) for some n ≥ 0.

3.34 (AMM, 1989, Anderson, Lovasz, Shor et al) A game is played with n
pebbles. At the start they are all in a pile at position 0 (the positions may be
thought of as integers on a number line). On every turn of the game, each pile
on the board is simultaneously divided into two equal subpiles (with one pebble
left over if the number of pebbles in the pile is odd). One subpile is moved one
position to the left, one is moved one position to the right, and if one pebble
is left over, it stays in its original position. The game ends when (and if) all
non-empty piles have one pebble. So for example, one play of the game might
be:

at start: 5
after one turn: 2 1 2

after two turns: 1 0 3 0 1
after three turns: 1 1 1 1 1

Prove that, for any odd n, the game will eventually end with a row of n consec-
utive piles of one pebble each.
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