
Solution. Noticing that $25 = 5^2$ and $27 = 3^3$, we have this is

$$5^6 - 3^6 = (5^3 - 3^3)(5^3 + 3^3)$$

$$= (5 - 3)(5^2 + 5 \cdot 3 + 3^2)(5 + 3)(5^2 - 5 \cdot 3 + 3^2)$$

$$= 2 \cdot 49 \cdot 8 \cdot 19$$

$$= 2^4 \cdot 7^2 \cdot 19.$$

2. Suppose x and y are real numbers satisfying $x + y = 5$. What is the largest possible value of $x^2 + 2xy$?

Solution. The quantity in question is $(x + y)^2 - y^2 \leq (x + y)^2 = 25$. Equality occurs when $x = 5$ and $y = 0$, hence the maximum possible value is 25.

3. Let ABC be an acute triangle with orthocenter H, circumcenter O, and incenter I. Prove that ray AI bisects $\angle HAO$.

Solution. Without loss of generality, $AB < AC$. It follows that $\angle BAH = 90^\circ - \angle B$, since the extension of AH is perpendicular to BC. Moreover, we also have $\angle AOC = 2\angle B$; but since $OA = OC$, this implies $\angle OAC = \frac{1}{2}(180^\circ - \angle AOC) = 90^\circ - \angle B$. So we conclude that $\angle BAH = \angle CAO$. Since $\angle BAI = \angle CAI$ as well, it follows that $\angle HAI = \angle OAI$, which is what we wanted to prove.

4. For which prime numbers p is $p^2 + 2$ also prime? Prove your answer.

Solution. The answer is $p = 3$. This indeed works, since $3^2 + 2 = 11$.

Consider any other prime number $p \neq 3$. Then it follows that $p^2 \equiv 1 \pmod{3}$; i.e. that p leaves remainder 1 when divided by 3. Consequently, $p^2 + 2$ is divisible by 3. Since $p \geq 2$, we have $p^2 + 2 \geq 7$ as well, thus $p^2 + 2$ cannot be prime in this case.

5. There is a colony consisting of 100 cells. Every minute, a cell dies with probability $\frac{1}{3}$; otherwise it splits into two identical copies. What is the probability that the colony never goes extinct?

Solution. The answer is $1 - \left(\frac{1}{2}\right)^{100}$.

Let p be the probability that a colony consisting of just one cell will survive. Then

$$p = \frac{1}{3} \cdot 0 + \frac{2}{3} \left(1 - (1 - p)^2\right)$$

owing to the fact that when the cell splits in two, the probability both of them go extinct is $(1 - p)^2$. Solving for p, we obtain $p = \frac{1}{2}$.

The colony initially has 100 cells; if we treat these as 100 distinct colonies, we obtain the claimed answer.

6. Let \(H, I, O, \Omega \) denote the orthocenter, incenter, circumcenter and circumcircle of a scalene acute triangle \(ABC \). Prove that if \(\angle BAC = 60^\circ \) then the circumcenter of \(\triangle IHO \) lies on \(\Omega \).

Solution. First, we show that the five points \(B, O, H, I, C \) all lie on a circle. To see this, note that
\[
\angle BIC = 90^\circ + \frac{1}{2} \angle BAC = 120^\circ
\]
\[
\angle BOC = 2 \angle BAC = 120^\circ
\]
\[
\angle BHC = 180^\circ - \angle BAC = 120^\circ.
\]
So, this proves the claim.

Let \(M \) be the midpoint of arc \(BC \) of \(\Omega \) now (not containing \(A \)). Evidently, \(MB = MC \) and \(\angle BMC = 120^\circ \). Since \(OB = OC \) and \(\angle BOC = 120^\circ \) as well, we discover that triangles \(BMO \) and \(CMO \) are actually equilateral triangles, whence \(MB = MO = MC \); i.e. \(M \) is the circumcenter of \(\triangle BOC \). Since \(B, O, H, I, C \) are all concyclic, \(M \) is the circumcenter of \(\triangle IHO \) as well, as desired.

7. Let \(a, b, c \) be positive integers. Prove that it is not possible for \(a^2 + b + c, b^2 + c + a, c^2 + a + b \) to all be perfect squares.

Solution. Without loss of generality we may assume \(\max\{a, b, c\} = a \). Then
\[
a^2 < a^2 + b + c \leq a^2 + 2a < (a + 1)^2.
\]
So, \(a^2 + b + c \) is not a perfect square, because it lies strictly between two perfect squares.

8. Let \(n \) be a fixed positive integer. Initially, \(n \) 1’s are written on a blackboard. Every minute, David picks two numbers \(x \) and \(y \) written on the blackboard, erases them, and writes the number \((x + y)^4 \) on the blackboard. Show that after \(n - 1 \) minutes, the number written on the blackboard is at least \(2^{4n^2-4} \).

Solution. We proceed by strong induction \(n \), with the base case \(n = 1 \) being vacuous. For the inductive step, consider the situation in which we have two numbers \(x \) and \(y \) remaining on the blackboard. Suppose the first one was written after \(a-1 \) operations, and the second one was written after \(b-1 \) operations, so that \((a - 1) + (b - 1) = n - 2 \).

Then by the inductive hypothesis,
\[
x \geq 2^{\frac{4a^2-4}{3}}, \quad y \geq 2^{\frac{4b^2-4}{3}}.
\]
Consequently, using convexity and the bound \((a + b)^2 \leq 2(a^2 + b^2) \), we have
\[
x + y \geq 2 \cdot 2^{\frac{2(a^2 + b^2) - 4}{3}} \geq 2^{\frac{(a + b)^2 - 1}{3}} = 2^{\frac{n^2 - 1}{3}}.
\]
So \((x + y)^4 \geq 2^{\frac{4n^2-4}{3}} \) as needed.