1. Let \(s_1, s_2, \ldots \) be an infinite arithmetic progression of distinct positive integers. Prove that \(s_1, s_2, \ldots \) is also an infinite arithmetic progression of distinct positive integers.

Solution. Let \(s_n = an + b \) for some integers \(a \) and \(b \). Then \(s_n = a(an + b) + b = a^2n + (ab + b) \), which is also an arithmetic progression.

2. Is there a polynomial \(P(n) \) with integer coefficients such that \(P(2) = 4 \) and \(P(P(2)) = 7 \)? Prove your answer.

Solution. The answer is no. Let \(P(n) = c_nx^n + \cdots + c_0 \). We are given that \(P(2) = 4 \) and \(P(4) = 7 \). The first equation implies that \(c_0 \) is even while the second implies that \(c_0 \) is odd, which is a contradiction.

3. Are there integers \(a, b, c, d \) which satisfy \(a^4 + b^4 + c^4 + 2016 = 10d \)?

Solution. The answer is no. Look at the equation in base 5. Observe that \(0^4 = 0 \), \(1^4 = 1 = 15 \), \(2^4 = 16 = 315 \), \(3^4 = 81 = 3115 \), \(4^4 = 256 = 20115 \), so each of \(a^4, b^4, c^4 \) must end in 0 or 1 in base 5. On the other hand \(10d - 2016 \) ends with 4 in base 5. This is impossible.

4. Let \(ABC \) be a triangle and \(P \) a point inside it. Rays \(BP \) and \(CP \) meet \(AC \) and \(AB \) at \(Y \) and \(X \), respectively. Prove that if \(AP \) bisects \(BC \) then \(XY \parallel BC \).

Solution. Let \(Q \) be the reflection of \(P \) across \(M \) (with \(M \) the midpoint of \(BC \)). Accordingly, \(BPCQ \) is a parallelogram.

From this, we see that \(\triangle AXP \sim \triangle ABQ \) and \(\triangle AYP \sim \triangle ACQ \), and thus we deduce

\[
\frac{AX}{AB} = \frac{AP}{AQ} = \frac{AY}{AC}
\]

so \(XY \parallel BC \).
5. Yan and Jacob play the following game. Yan shows Jacob a weighted 4-sided die labelled 1, 2, 3, 4, with weights $\frac{1}{4}, \frac{1}{3}, \frac{1}{7}, \frac{1}{8}$, respectively. Then, Jacob specifies 4 positive real numbers x_1, x_2, x_3, x_4 such that $x_1 + \cdots + x_4 = 1$. Finally, Yan rolls the dice, and Jacob earns $10 + \log(x_k)$ dollars if the die shows k (note this may be negative). Which x_i should Jacob pick to maximize his expected payoff?

(Here log is the natural logarithm, which has base $e \approx 2.718$.)

Solution. Jacob should pick $(x_1, x_2, x_3, x_4) = \left(\frac{1}{2}, \frac{1}{3}, \frac{1}{7}, \frac{1}{8}\right)$. More generally, suppose the weights are p_1, \ldots, p_4. Then Jacob’s expected payoff is

$$10 + \sum_{i=1}^{4} p_i \log(x_i) = 10 + \sum_{i=1}^{4} p_i log p_i + \sum_{k=1}^{4} p_i \log \left(\frac{x_k}{p_k}\right).$$

Now, by JENSEN’S INEQUALITY on the concave function $\log x$, we obtain

$$\sum_{i=1}^{4} p_i \log \left(\frac{x_i}{p_i}\right) \leq \log \left(\sum_{i=1}^{4} p_i \cdot \frac{x_i}{p_i}\right) = \log 1 = 0$$

and equality occurs exactly when $\frac{x_1}{p_1} = \frac{x_2}{p_2} = \frac{x_3}{p_3} = \frac{x_4}{p_4}$; that is, when $x_i = p_i$ for every i. \(\square\)

6. Let $X = \{1, 2, \ldots, 100\}$. How many functions $f : X \to X$ satisfy $f(b) < f(a) + (b - a)$ for all $1 \leq a < b \leq 100$?

Solution. The answer is $\binom{100}{100}$. We claim that the functions are precisely those of the form $f(n) = n + a_n$, where

$$-99 \leq a_{100} < a_{99} < \cdots < a_1 \leq 99$$

is an arbitrary sequence. The answer follows from this.

To see that all functions are of this form, we rewrite the given as $f(b) - b < f(a) - a$, which tells us that $f(100) - 100 < f(99) - 99 < \cdots < f(1) - 1$. Since $f(100) - 100 \geq -99$ and $f(1) - 1 \leq 99$, this shows all functions are of the form claimed above, i.e. that $1 - n \leq f(n) - n \leq 100 - n$.

Similarly, it remains to check that all functions of the form satisfy the conditions. The inequality $f(b) < f(a) + (b - a)$ is immediate. Moreover, it is easy to see that $a_{100} \geq -99$, $a_{99} \geq -98$, and so on, so $1 \leq n + a_n$ holds; similarly, $n + a_n \leq 100$ holds too. Thus $n + a_n$ is indeed an element of X. \(\square\)

7. Find, with proof, the largest possible value of

$$\frac{x_1^2 + \cdots + x_n^2}{n}$$

where real numbers $x_1, \ldots, x_n \geq -1$ are satisfying $x_1^3 + \cdots + x_n^3 = 0$.

Solution. For any i, we have $0 \leq (x_i + 1)(x_i - 2)^2 = x_i^3 - 3x_i^2 + 4$. Adding all of these we deduce that \(\sum_{i=1}^{n} x_i^2 \leq \frac{1}{3} \sum_{i=1}^{n} (x_i^3 + 4) = \frac{2}{3} n\). Equality occurs, for example, when $n = 9, x_1 = \cdots = x_8 = -1$ and $x_9 = 2$. Therefore, the answer is $\frac{4}{3}$. \(\square\)